| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neitx | Structured version Visualization version Unicode version | ||
| Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
| Ref | Expression |
|---|---|
| neitx.x |
|
| neitx.y |
|
| Ref | Expression |
|---|---|
| neitx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neitx.x |
. . . . . 6
| |
| 2 | 1 | neii1 20910 |
. . . . 5
|
| 3 | 2 | ad2ant2r 783 |
. . . 4
|
| 4 | neitx.y |
. . . . . 6
| |
| 5 | 4 | neii1 20910 |
. . . . 5
|
| 6 | 5 | ad2ant2l 782 |
. . . 4
|
| 7 | xpss12 5225 |
. . . 4
| |
| 8 | 3, 6, 7 | syl2anc 693 |
. . 3
|
| 9 | 1, 4 | txuni 21395 |
. . . 4
|
| 10 | 9 | adantr 481 |
. . 3
|
| 11 | 8, 10 | sseqtrd 3641 |
. 2
|
| 12 | simp-5l 808 |
. . . . . 6
| |
| 13 | simp-4r 807 |
. . . . . 6
| |
| 14 | simplr 792 |
. . . . . 6
| |
| 15 | txopn 21405 |
. . . . . 6
| |
| 16 | 12, 13, 14, 15 | syl12anc 1324 |
. . . . 5
|
| 17 | simpr1l 1118 |
. . . . . . 7
| |
| 18 | 17 | 3anassrs 1290 |
. . . . . 6
|
| 19 | simprl 794 |
. . . . . 6
| |
| 20 | xpss12 5225 |
. . . . . 6
| |
| 21 | 18, 19, 20 | syl2anc 693 |
. . . . 5
|
| 22 | simpr1r 1119 |
. . . . . . 7
| |
| 23 | 22 | 3anassrs 1290 |
. . . . . 6
|
| 24 | simprr 796 |
. . . . . 6
| |
| 25 | xpss12 5225 |
. . . . . 6
| |
| 26 | 23, 24, 25 | syl2anc 693 |
. . . . 5
|
| 27 | sseq2 3627 |
. . . . . . 7
| |
| 28 | sseq1 3626 |
. . . . . . 7
| |
| 29 | 27, 28 | anbi12d 747 |
. . . . . 6
|
| 30 | 29 | rspcev 3309 |
. . . . 5
|
| 31 | 16, 21, 26, 30 | syl12anc 1324 |
. . . 4
|
| 32 | neii2 20912 |
. . . . . 6
| |
| 33 | 32 | ad2ant2l 782 |
. . . . 5
|
| 34 | 33 | ad2antrr 762 |
. . . 4
|
| 35 | 31, 34 | r19.29a 3078 |
. . 3
|
| 36 | neii2 20912 |
. . . 4
| |
| 37 | 36 | ad2ant2r 783 |
. . 3
|
| 38 | 35, 37 | r19.29a 3078 |
. 2
|
| 39 | txtop 21372 |
. . . 4
| |
| 40 | 39 | adantr 481 |
. . 3
|
| 41 | 1 | neiss2 20905 |
. . . . . 6
|
| 42 | 41 | ad2ant2r 783 |
. . . . 5
|
| 43 | 4 | neiss2 20905 |
. . . . . 6
|
| 44 | 43 | ad2ant2l 782 |
. . . . 5
|
| 45 | xpss12 5225 |
. . . . 5
| |
| 46 | 42, 44, 45 | syl2anc 693 |
. . . 4
|
| 47 | 46, 10 | sseqtrd 3641 |
. . 3
|
| 48 | eqid 2622 |
. . . 4
| |
| 49 | 48 | isnei 20907 |
. . 3
|
| 50 | 40, 47, 49 | syl2anc 693 |
. 2
|
| 51 | 11, 38, 50 | mpbir2and 957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-nei 20902 df-tx 21365 |
| This theorem is referenced by: utop2nei 22054 utop3cls 22055 |
| Copyright terms: Public domain | W3C validator |