MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnacom Structured version   Visualization version   GIF version

Theorem nnacom 7697
Description: Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnacom ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) = (𝐵 +𝑜 𝐴))

Proof of Theorem nnacom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . . 5 (𝑥 = 𝐴 → (𝑥 +𝑜 𝐵) = (𝐴 +𝑜 𝐵))
2 oveq2 6658 . . . . 5 (𝑥 = 𝐴 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝐴))
31, 2eqeq12d 2637 . . . 4 (𝑥 = 𝐴 → ((𝑥 +𝑜 𝐵) = (𝐵 +𝑜 𝑥) ↔ (𝐴 +𝑜 𝐵) = (𝐵 +𝑜 𝐴)))
43imbi2d 330 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥 +𝑜 𝐵) = (𝐵 +𝑜 𝑥)) ↔ (𝐵 ∈ ω → (𝐴 +𝑜 𝐵) = (𝐵 +𝑜 𝐴))))
5 oveq1 6657 . . . . 5 (𝑥 = ∅ → (𝑥 +𝑜 𝐵) = (∅ +𝑜 𝐵))
6 oveq2 6658 . . . . 5 (𝑥 = ∅ → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 ∅))
75, 6eqeq12d 2637 . . . 4 (𝑥 = ∅ → ((𝑥 +𝑜 𝐵) = (𝐵 +𝑜 𝑥) ↔ (∅ +𝑜 𝐵) = (𝐵 +𝑜 ∅)))
8 oveq1 6657 . . . . 5 (𝑥 = 𝑦 → (𝑥 +𝑜 𝐵) = (𝑦 +𝑜 𝐵))
9 oveq2 6658 . . . . 5 (𝑥 = 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝑦))
108, 9eqeq12d 2637 . . . 4 (𝑥 = 𝑦 → ((𝑥 +𝑜 𝐵) = (𝐵 +𝑜 𝑥) ↔ (𝑦 +𝑜 𝐵) = (𝐵 +𝑜 𝑦)))
11 oveq1 6657 . . . . 5 (𝑥 = suc 𝑦 → (𝑥 +𝑜 𝐵) = (suc 𝑦 +𝑜 𝐵))
12 oveq2 6658 . . . . 5 (𝑥 = suc 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 suc 𝑦))
1311, 12eqeq12d 2637 . . . 4 (𝑥 = suc 𝑦 → ((𝑥 +𝑜 𝐵) = (𝐵 +𝑜 𝑥) ↔ (suc 𝑦 +𝑜 𝐵) = (𝐵 +𝑜 suc 𝑦)))
14 nna0r 7689 . . . . 5 (𝐵 ∈ ω → (∅ +𝑜 𝐵) = 𝐵)
15 nna0 7684 . . . . 5 (𝐵 ∈ ω → (𝐵 +𝑜 ∅) = 𝐵)
1614, 15eqtr4d 2659 . . . 4 (𝐵 ∈ ω → (∅ +𝑜 𝐵) = (𝐵 +𝑜 ∅))
17 suceq 5790 . . . . . 6 ((𝑦 +𝑜 𝐵) = (𝐵 +𝑜 𝑦) → suc (𝑦 +𝑜 𝐵) = suc (𝐵 +𝑜 𝑦))
18 oveq2 6658 . . . . . . . . . . 11 (𝑥 = 𝐵 → (suc 𝑦 +𝑜 𝑥) = (suc 𝑦 +𝑜 𝐵))
19 oveq2 6658 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝑦 +𝑜 𝑥) = (𝑦 +𝑜 𝐵))
20 suceq 5790 . . . . . . . . . . . 12 ((𝑦 +𝑜 𝑥) = (𝑦 +𝑜 𝐵) → suc (𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝐵))
2119, 20syl 17 . . . . . . . . . . 11 (𝑥 = 𝐵 → suc (𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝐵))
2218, 21eqeq12d 2637 . . . . . . . . . 10 (𝑥 = 𝐵 → ((suc 𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝑥) ↔ (suc 𝑦 +𝑜 𝐵) = suc (𝑦 +𝑜 𝐵)))
2322imbi2d 330 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝑦 ∈ ω → (suc 𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝑥)) ↔ (𝑦 ∈ ω → (suc 𝑦 +𝑜 𝐵) = suc (𝑦 +𝑜 𝐵))))
24 oveq2 6658 . . . . . . . . . . 11 (𝑥 = ∅ → (suc 𝑦 +𝑜 𝑥) = (suc 𝑦 +𝑜 ∅))
25 oveq2 6658 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑦 +𝑜 𝑥) = (𝑦 +𝑜 ∅))
26 suceq 5790 . . . . . . . . . . . 12 ((𝑦 +𝑜 𝑥) = (𝑦 +𝑜 ∅) → suc (𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 ∅))
2725, 26syl 17 . . . . . . . . . . 11 (𝑥 = ∅ → suc (𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 ∅))
2824, 27eqeq12d 2637 . . . . . . . . . 10 (𝑥 = ∅ → ((suc 𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝑥) ↔ (suc 𝑦 +𝑜 ∅) = suc (𝑦 +𝑜 ∅)))
29 oveq2 6658 . . . . . . . . . . 11 (𝑥 = 𝑧 → (suc 𝑦 +𝑜 𝑥) = (suc 𝑦 +𝑜 𝑧))
30 oveq2 6658 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑦 +𝑜 𝑥) = (𝑦 +𝑜 𝑧))
31 suceq 5790 . . . . . . . . . . . 12 ((𝑦 +𝑜 𝑥) = (𝑦 +𝑜 𝑧) → suc (𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝑧))
3230, 31syl 17 . . . . . . . . . . 11 (𝑥 = 𝑧 → suc (𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝑧))
3329, 32eqeq12d 2637 . . . . . . . . . 10 (𝑥 = 𝑧 → ((suc 𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝑥) ↔ (suc 𝑦 +𝑜 𝑧) = suc (𝑦 +𝑜 𝑧)))
34 oveq2 6658 . . . . . . . . . . 11 (𝑥 = suc 𝑧 → (suc 𝑦 +𝑜 𝑥) = (suc 𝑦 +𝑜 suc 𝑧))
35 oveq2 6658 . . . . . . . . . . . 12 (𝑥 = suc 𝑧 → (𝑦 +𝑜 𝑥) = (𝑦 +𝑜 suc 𝑧))
36 suceq 5790 . . . . . . . . . . . 12 ((𝑦 +𝑜 𝑥) = (𝑦 +𝑜 suc 𝑧) → suc (𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 suc 𝑧))
3735, 36syl 17 . . . . . . . . . . 11 (𝑥 = suc 𝑧 → suc (𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 suc 𝑧))
3834, 37eqeq12d 2637 . . . . . . . . . 10 (𝑥 = suc 𝑧 → ((suc 𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝑥) ↔ (suc 𝑦 +𝑜 suc 𝑧) = suc (𝑦 +𝑜 suc 𝑧)))
39 peano2 7086 . . . . . . . . . . . 12 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
40 nna0 7684 . . . . . . . . . . . 12 (suc 𝑦 ∈ ω → (suc 𝑦 +𝑜 ∅) = suc 𝑦)
4139, 40syl 17 . . . . . . . . . . 11 (𝑦 ∈ ω → (suc 𝑦 +𝑜 ∅) = suc 𝑦)
42 nna0 7684 . . . . . . . . . . . 12 (𝑦 ∈ ω → (𝑦 +𝑜 ∅) = 𝑦)
43 suceq 5790 . . . . . . . . . . . 12 ((𝑦 +𝑜 ∅) = 𝑦 → suc (𝑦 +𝑜 ∅) = suc 𝑦)
4442, 43syl 17 . . . . . . . . . . 11 (𝑦 ∈ ω → suc (𝑦 +𝑜 ∅) = suc 𝑦)
4541, 44eqtr4d 2659 . . . . . . . . . 10 (𝑦 ∈ ω → (suc 𝑦 +𝑜 ∅) = suc (𝑦 +𝑜 ∅))
46 suceq 5790 . . . . . . . . . . . 12 ((suc 𝑦 +𝑜 𝑧) = suc (𝑦 +𝑜 𝑧) → suc (suc 𝑦 +𝑜 𝑧) = suc suc (𝑦 +𝑜 𝑧))
47 nnasuc 7686 . . . . . . . . . . . . . 14 ((suc 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (suc 𝑦 +𝑜 suc 𝑧) = suc (suc 𝑦 +𝑜 𝑧))
4839, 47sylan 488 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (suc 𝑦 +𝑜 suc 𝑧) = suc (suc 𝑦 +𝑜 𝑧))
49 nnasuc 7686 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 +𝑜 suc 𝑧) = suc (𝑦 +𝑜 𝑧))
50 suceq 5790 . . . . . . . . . . . . . 14 ((𝑦 +𝑜 suc 𝑧) = suc (𝑦 +𝑜 𝑧) → suc (𝑦 +𝑜 suc 𝑧) = suc suc (𝑦 +𝑜 𝑧))
5149, 50syl 17 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → suc (𝑦 +𝑜 suc 𝑧) = suc suc (𝑦 +𝑜 𝑧))
5248, 51eqeq12d 2637 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((suc 𝑦 +𝑜 suc 𝑧) = suc (𝑦 +𝑜 suc 𝑧) ↔ suc (suc 𝑦 +𝑜 𝑧) = suc suc (𝑦 +𝑜 𝑧)))
5346, 52syl5ibr 236 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((suc 𝑦 +𝑜 𝑧) = suc (𝑦 +𝑜 𝑧) → (suc 𝑦 +𝑜 suc 𝑧) = suc (𝑦 +𝑜 suc 𝑧)))
5453expcom 451 . . . . . . . . . 10 (𝑧 ∈ ω → (𝑦 ∈ ω → ((suc 𝑦 +𝑜 𝑧) = suc (𝑦 +𝑜 𝑧) → (suc 𝑦 +𝑜 suc 𝑧) = suc (𝑦 +𝑜 suc 𝑧))))
5528, 33, 38, 45, 54finds2 7094 . . . . . . . . 9 (𝑥 ∈ ω → (𝑦 ∈ ω → (suc 𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝑥)))
5623, 55vtoclga 3272 . . . . . . . 8 (𝐵 ∈ ω → (𝑦 ∈ ω → (suc 𝑦 +𝑜 𝐵) = suc (𝑦 +𝑜 𝐵)))
5756imp 445 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝑦 +𝑜 𝐵) = suc (𝑦 +𝑜 𝐵))
58 nnasuc 7686 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +𝑜 suc 𝑦) = suc (𝐵 +𝑜 𝑦))
5957, 58eqeq12d 2637 . . . . . 6 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝑦 +𝑜 𝐵) = (𝐵 +𝑜 suc 𝑦) ↔ suc (𝑦 +𝑜 𝐵) = suc (𝐵 +𝑜 𝑦)))
6017, 59syl5ibr 236 . . . . 5 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +𝑜 𝐵) = (𝐵 +𝑜 𝑦) → (suc 𝑦 +𝑜 𝐵) = (𝐵 +𝑜 suc 𝑦)))
6160expcom 451 . . . 4 (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦 +𝑜 𝐵) = (𝐵 +𝑜 𝑦) → (suc 𝑦 +𝑜 𝐵) = (𝐵 +𝑜 suc 𝑦))))
627, 10, 13, 16, 61finds2 7094 . . 3 (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥 +𝑜 𝐵) = (𝐵 +𝑜 𝑥)))
634, 62vtoclga 3272 . 2 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 +𝑜 𝐵) = (𝐵 +𝑜 𝐴)))
6463imp 445 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) = (𝐵 +𝑜 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  c0 3915  suc csuc 5725  (class class class)co 6650  ωcom 7065   +𝑜 coa 7557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564
This theorem is referenced by:  nnaordr  7700  nnmsucr  7705  nnaword2  7710  omopthlem2  7736  omopthi  7737  addcompi  9716  finxpreclem4  33231
  Copyright terms: Public domain W3C validator