MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthi Structured version   Visualization version   GIF version

Theorem omopthi 7737
Description: An ordered pair theorem for ω. Theorem 17.3 of [Quine] p. 124. This proof is adapted from nn0opthi 13057. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopth.1 𝐴 ∈ ω
omopth.2 𝐵 ∈ ω
omopth.3 𝐶 ∈ ω
omopth.4 𝐷 ∈ ω
Assertion
Ref Expression
omopthi ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem omopthi
StepHypRef Expression
1 omopth.1 . . . . . . . . . . . . 13 𝐴 ∈ ω
2 omopth.2 . . . . . . . . . . . . 13 𝐵 ∈ ω
31, 2nnacli 7694 . . . . . . . . . . . 12 (𝐴 +𝑜 𝐵) ∈ ω
43nnoni 7072 . . . . . . . . . . 11 (𝐴 +𝑜 𝐵) ∈ On
54onordi 5832 . . . . . . . . . 10 Ord (𝐴 +𝑜 𝐵)
6 omopth.3 . . . . . . . . . . . . 13 𝐶 ∈ ω
7 omopth.4 . . . . . . . . . . . . 13 𝐷 ∈ ω
86, 7nnacli 7694 . . . . . . . . . . . 12 (𝐶 +𝑜 𝐷) ∈ ω
98nnoni 7072 . . . . . . . . . . 11 (𝐶 +𝑜 𝐷) ∈ On
109onordi 5832 . . . . . . . . . 10 Ord (𝐶 +𝑜 𝐷)
11 ordtri3 5759 . . . . . . . . . 10 ((Ord (𝐴 +𝑜 𝐵) ∧ Ord (𝐶 +𝑜 𝐷)) → ((𝐴 +𝑜 𝐵) = (𝐶 +𝑜 𝐷) ↔ ¬ ((𝐴 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐷) ∨ (𝐶 +𝑜 𝐷) ∈ (𝐴 +𝑜 𝐵))))
125, 10, 11mp2an 708 . . . . . . . . 9 ((𝐴 +𝑜 𝐵) = (𝐶 +𝑜 𝐷) ↔ ¬ ((𝐴 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐷) ∨ (𝐶 +𝑜 𝐷) ∈ (𝐴 +𝑜 𝐵)))
1312con2bii 347 . . . . . . . 8 (((𝐴 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐷) ∨ (𝐶 +𝑜 𝐷) ∈ (𝐴 +𝑜 𝐵)) ↔ ¬ (𝐴 +𝑜 𝐵) = (𝐶 +𝑜 𝐷))
141, 2, 8, 7omopthlem2 7736 . . . . . . . . . 10 ((𝐴 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐷) → ¬ (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) = (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵))
15 eqcom 2629 . . . . . . . . . 10 ((((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) = (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) ↔ (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷))
1614, 15sylnib 318 . . . . . . . . 9 ((𝐴 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐷) → ¬ (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷))
176, 7, 3, 2omopthlem2 7736 . . . . . . . . 9 ((𝐶 +𝑜 𝐷) ∈ (𝐴 +𝑜 𝐵) → ¬ (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷))
1816, 17jaoi 394 . . . . . . . 8 (((𝐴 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐷) ∨ (𝐶 +𝑜 𝐷) ∈ (𝐴 +𝑜 𝐵)) → ¬ (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷))
1913, 18sylbir 225 . . . . . . 7 (¬ (𝐴 +𝑜 𝐵) = (𝐶 +𝑜 𝐷) → ¬ (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷))
2019con4i 113 . . . . . 6 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → (𝐴 +𝑜 𝐵) = (𝐶 +𝑜 𝐷))
21 id 22 . . . . . . . . 9 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷))
2220, 20oveq12d 6668 . . . . . . . . . 10 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) = ((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)))
2322oveq1d 6665 . . . . . . . . 9 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐷) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷))
2421, 23eqtr4d 2659 . . . . . . . 8 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐷))
253, 3nnmcli 7695 . . . . . . . . 9 ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) ∈ ω
26 nnacan 7708 . . . . . . . . 9 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐷 ∈ ω) → ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐷) ↔ 𝐵 = 𝐷))
2725, 2, 7, 26mp3an 1424 . . . . . . . 8 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐷) ↔ 𝐵 = 𝐷)
2824, 27sylib 208 . . . . . . 7 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → 𝐵 = 𝐷)
2928oveq2d 6666 . . . . . 6 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → (𝐶 +𝑜 𝐵) = (𝐶 +𝑜 𝐷))
3020, 29eqtr4d 2659 . . . . 5 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → (𝐴 +𝑜 𝐵) = (𝐶 +𝑜 𝐵))
31 nnacom 7697 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝐵 +𝑜 𝐴) = (𝐴 +𝑜 𝐵))
322, 1, 31mp2an 708 . . . . 5 (𝐵 +𝑜 𝐴) = (𝐴 +𝑜 𝐵)
33 nnacom 7697 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵 +𝑜 𝐶) = (𝐶 +𝑜 𝐵))
342, 6, 33mp2an 708 . . . . 5 (𝐵 +𝑜 𝐶) = (𝐶 +𝑜 𝐵)
3530, 32, 343eqtr4g 2681 . . . 4 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → (𝐵 +𝑜 𝐴) = (𝐵 +𝑜 𝐶))
36 nnacan 7708 . . . . 5 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐵 +𝑜 𝐴) = (𝐵 +𝑜 𝐶) ↔ 𝐴 = 𝐶))
372, 1, 6, 36mp3an 1424 . . . 4 ((𝐵 +𝑜 𝐴) = (𝐵 +𝑜 𝐶) ↔ 𝐴 = 𝐶)
3835, 37sylib 208 . . 3 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → 𝐴 = 𝐶)
3938, 28jca 554 . 2 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
40 oveq12 6659 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 +𝑜 𝐵) = (𝐶 +𝑜 𝐷))
4140, 40oveq12d 6668 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → ((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) = ((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)))
42 simpr 477 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐵 = 𝐷)
4341, 42oveq12d 6668 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷))
4439, 43impbii 199 1 ((((𝐴 +𝑜 𝐵) ·𝑜 (𝐴 +𝑜 𝐵)) +𝑜 𝐵) = (((𝐶 +𝑜 𝐷) ·𝑜 (𝐶 +𝑜 𝐷)) +𝑜 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  Ord word 5722  (class class class)co 6650  ωcom 7065   +𝑜 coa 7557   ·𝑜 comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565
This theorem is referenced by:  omopth  7738
  Copyright terms: Public domain W3C validator