| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 6658 |
. . . . . 6
⊢ (𝑥 = 𝐶 → ((𝐴 ·𝑜 𝐵) ·𝑜
𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜
𝐶)) |
| 2 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑥 = 𝐶 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝐶)) |
| 3 | 2 | oveq2d 6666 |
. . . . . 6
⊢ (𝑥 = 𝐶 → (𝐴 ·𝑜 (𝐵 ·𝑜
𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝐶))) |
| 4 | 1, 3 | eqeq12d 2637 |
. . . . 5
⊢ (𝑥 = 𝐶 → (((𝐴 ·𝑜 𝐵) ·𝑜
𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝑥)) ↔ ((𝐴 ·𝑜
𝐵)
·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝐶)))) |
| 5 | 4 | imbi2d 330 |
. . . 4
⊢ (𝑥 = 𝐶 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·𝑜 𝐵) ·𝑜
𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·𝑜
𝐵)
·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝐶))))) |
| 6 | | oveq2 6658 |
. . . . . 6
⊢ (𝑥 = ∅ → ((𝐴 ·𝑜
𝐵)
·𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜
∅)) |
| 7 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝐵 ·𝑜
𝑥) = (𝐵 ·𝑜
∅)) |
| 8 | 7 | oveq2d 6666 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝐴 ·𝑜
(𝐵
·𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜
∅))) |
| 9 | 6, 8 | eqeq12d 2637 |
. . . . 5
⊢ (𝑥 = ∅ → (((𝐴 ·𝑜
𝐵)
·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝑥)) ↔ ((𝐴 ·𝑜
𝐵)
·𝑜 ∅) = (𝐴 ·𝑜 (𝐵 ·𝑜
∅)))) |
| 10 | | oveq2 6658 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝐴 ·𝑜 𝐵) ·𝑜
𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜
𝑦)) |
| 11 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝑦)) |
| 12 | 11 | oveq2d 6666 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐴 ·𝑜 (𝐵 ·𝑜
𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝑦))) |
| 13 | 10, 12 | eqeq12d 2637 |
. . . . 5
⊢ (𝑥 = 𝑦 → (((𝐴 ·𝑜 𝐵) ·𝑜
𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝑥)) ↔ ((𝐴 ·𝑜
𝐵)
·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝑦)))) |
| 14 | | oveq2 6658 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 𝐵) ·𝑜
𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜
suc 𝑦)) |
| 15 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑥 = suc 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 suc 𝑦)) |
| 16 | 15 | oveq2d 6666 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → (𝐴 ·𝑜 (𝐵 ·𝑜
𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜
suc 𝑦))) |
| 17 | 14, 16 | eqeq12d 2637 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (((𝐴 ·𝑜 𝐵) ·𝑜
𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝑥)) ↔ ((𝐴 ·𝑜
𝐵)
·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜
suc 𝑦)))) |
| 18 | | nnmcl 7692 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜
𝐵) ∈
ω) |
| 19 | | nnm0 7685 |
. . . . . . 7
⊢ ((𝐴 ·𝑜
𝐵) ∈ ω →
((𝐴
·𝑜 𝐵) ·𝑜 ∅) =
∅) |
| 20 | 18, 19 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·𝑜
𝐵)
·𝑜 ∅) = ∅) |
| 21 | | nnm0 7685 |
. . . . . . . 8
⊢ (𝐵 ∈ ω → (𝐵 ·𝑜
∅) = ∅) |
| 22 | 21 | oveq2d 6666 |
. . . . . . 7
⊢ (𝐵 ∈ ω → (𝐴 ·𝑜
(𝐵
·𝑜 ∅)) = (𝐴 ·𝑜
∅)) |
| 23 | | nnm0 7685 |
. . . . . . 7
⊢ (𝐴 ∈ ω → (𝐴 ·𝑜
∅) = ∅) |
| 24 | 22, 23 | sylan9eqr 2678 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜
(𝐵
·𝑜 ∅)) = ∅) |
| 25 | 20, 24 | eqtr4d 2659 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·𝑜
𝐵)
·𝑜 ∅) = (𝐴 ·𝑜 (𝐵 ·𝑜
∅))) |
| 26 | | oveq1 6657 |
. . . . . . . . 9
⊢ (((𝐴 ·𝑜
𝐵)
·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝑦)) → (((𝐴 ·𝑜
𝐵)
·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜
𝑦)) +𝑜
(𝐴
·𝑜 𝐵))) |
| 27 | | nnmsuc 7687 |
. . . . . . . . . . 11
⊢ (((𝐴 ·𝑜
𝐵) ∈ ω ∧
𝑦 ∈ ω) →
((𝐴
·𝑜 𝐵) ·𝑜 suc 𝑦) = (((𝐴 ·𝑜 𝐵) ·𝑜
𝑦) +𝑜
(𝐴
·𝑜 𝐵))) |
| 28 | 18, 27 | stoic3 1701 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜
𝐵)
·𝑜 suc 𝑦) = (((𝐴 ·𝑜 𝐵) ·𝑜
𝑦) +𝑜
(𝐴
·𝑜 𝐵))) |
| 29 | | nnmsuc 7687 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·𝑜
suc 𝑦) = ((𝐵 ·𝑜
𝑦) +𝑜
𝐵)) |
| 30 | 29 | 3adant1 1079 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·𝑜
suc 𝑦) = ((𝐵 ·𝑜
𝑦) +𝑜
𝐵)) |
| 31 | 30 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜
(𝐵
·𝑜 suc 𝑦)) = (𝐴 ·𝑜 ((𝐵 ·𝑜
𝑦) +𝑜
𝐵))) |
| 32 | | nnmcl 7692 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·𝑜
𝑦) ∈
ω) |
| 33 | | nndi 7703 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ω ∧ (𝐵 ·𝑜
𝑦) ∈ ω ∧
𝐵 ∈ ω) →
(𝐴
·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜
𝑦)) +𝑜
(𝐴
·𝑜 𝐵))) |
| 34 | 32, 33 | syl3an2 1360 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜
((𝐵
·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜
𝑦)) +𝑜
(𝐴
·𝑜 𝐵))) |
| 35 | 34 | 3exp 1264 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ∈ ω → (𝐴 ·𝑜
((𝐵
·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜
𝑦)) +𝑜
(𝐴
·𝑜 𝐵))))) |
| 36 | 35 | expd 452 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (𝐵 ∈ ω → (𝐴 ·𝑜
((𝐵
·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜
𝑦)) +𝑜
(𝐴
·𝑜 𝐵)))))) |
| 37 | 36 | com34 91 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (𝐴 ·𝑜
((𝐵
·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜
𝑦)) +𝑜
(𝐴
·𝑜 𝐵)))))) |
| 38 | 37 | pm2.43d 53 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (𝐴 ·𝑜
((𝐵
·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜
𝑦)) +𝑜
(𝐴
·𝑜 𝐵))))) |
| 39 | 38 | 3imp 1256 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜
((𝐵
·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜
𝑦)) +𝑜
(𝐴
·𝑜 𝐵))) |
| 40 | 31, 39 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜
(𝐵
·𝑜 suc 𝑦)) = ((𝐴 ·𝑜 (𝐵 ·𝑜
𝑦)) +𝑜
(𝐴
·𝑜 𝐵))) |
| 41 | 28, 40 | eqeq12d 2637 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜
𝐵)
·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜
suc 𝑦)) ↔ (((𝐴 ·𝑜
𝐵)
·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜
𝑦)) +𝑜
(𝐴
·𝑜 𝐵)))) |
| 42 | 26, 41 | syl5ibr 236 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜
𝐵)
·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝑦)) → ((𝐴 ·𝑜
𝐵)
·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜
suc 𝑦)))) |
| 43 | 42 | 3exp 1264 |
. . . . . . 7
⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (((𝐴 ·𝑜
𝐵)
·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝑦)) → ((𝐴 ·𝑜
𝐵)
·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜
suc 𝑦)))))) |
| 44 | 43 | com3r 87 |
. . . . . 6
⊢ (𝑦 ∈ ω → (𝐴 ∈ ω → (𝐵 ∈ ω → (((𝐴 ·𝑜
𝐵)
·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝑦)) → ((𝐴 ·𝑜
𝐵)
·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜
suc 𝑦)))))) |
| 45 | 44 | impd 447 |
. . . . 5
⊢ (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 ·𝑜
𝐵)
·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝑦)) → ((𝐴 ·𝑜
𝐵)
·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜
suc 𝑦))))) |
| 46 | 9, 13, 17, 25, 45 | finds2 7094 |
. . . 4
⊢ (𝑥 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·𝑜
𝐵)
·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝑥)))) |
| 47 | 5, 46 | vtoclga 3272 |
. . 3
⊢ (𝐶 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·𝑜
𝐵)
·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝐶)))) |
| 48 | 47 | expdcom 455 |
. 2
⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐶 ∈ ω → ((𝐴 ·𝑜
𝐵)
·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝐶))))) |
| 49 | 48 | 3imp 1256 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·𝑜
𝐵)
·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜
𝐶))) |