MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmcl Structured version   Visualization version   GIF version

Theorem nnmcl 7692
Description: Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmcl ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 𝐵) ∈ ω)

Proof of Theorem nnmcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . 5 (𝑥 = 𝐵 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝐵))
21eleq1d 2686 . . . 4 (𝑥 = 𝐵 → ((𝐴 ·𝑜 𝑥) ∈ ω ↔ (𝐴 ·𝑜 𝐵) ∈ ω))
32imbi2d 330 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 ·𝑜 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴 ·𝑜 𝐵) ∈ ω)))
4 oveq2 6658 . . . . 5 (𝑥 = ∅ → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 ∅))
54eleq1d 2686 . . . 4 (𝑥 = ∅ → ((𝐴 ·𝑜 𝑥) ∈ ω ↔ (𝐴 ·𝑜 ∅) ∈ ω))
6 oveq2 6658 . . . . 5 (𝑥 = 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝑦))
76eleq1d 2686 . . . 4 (𝑥 = 𝑦 → ((𝐴 ·𝑜 𝑥) ∈ ω ↔ (𝐴 ·𝑜 𝑦) ∈ ω))
8 oveq2 6658 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 suc 𝑦))
98eleq1d 2686 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 𝑥) ∈ ω ↔ (𝐴 ·𝑜 suc 𝑦) ∈ ω))
10 nnm0 7685 . . . . 5 (𝐴 ∈ ω → (𝐴 ·𝑜 ∅) = ∅)
11 peano1 7085 . . . . 5 ∅ ∈ ω
1210, 11syl6eqel 2709 . . . 4 (𝐴 ∈ ω → (𝐴 ·𝑜 ∅) ∈ ω)
13 nnacl 7691 . . . . . . . 8 (((𝐴 ·𝑜 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ∈ ω)
1413expcom 451 . . . . . . 7 (𝐴 ∈ ω → ((𝐴 ·𝑜 𝑦) ∈ ω → ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ∈ ω))
1514adantr 481 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 𝑦) ∈ ω → ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ∈ ω))
16 nnmsuc 7687 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))
1716eleq1d 2686 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 suc 𝑦) ∈ ω ↔ ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ∈ ω))
1815, 17sylibrd 249 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 𝑦) ∈ ω → (𝐴 ·𝑜 suc 𝑦) ∈ ω))
1918expcom 451 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 ·𝑜 𝑦) ∈ ω → (𝐴 ·𝑜 suc 𝑦) ∈ ω)))
205, 7, 9, 12, 19finds2 7094 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 ·𝑜 𝑥) ∈ ω))
213, 20vtoclga 3272 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 ·𝑜 𝐵) ∈ ω))
2221impcom 446 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 𝐵) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  c0 3915  suc csuc 5725  (class class class)co 6650  ωcom 7065   +𝑜 coa 7557   ·𝑜 comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-omul 7565
This theorem is referenced by:  nnecl  7693  nnmcli  7695  nndi  7703  nnmass  7704  nnmsucr  7705  nnmordi  7711  nnmord  7712  nnmword  7713  omabslem  7726  nnneo  7731  nneob  7732  fin1a2lem4  9225  mulclpi  9715
  Copyright terms: Public domain W3C validator