MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndi Structured version   Visualization version   GIF version

Theorem nndi 7703
Description: Distributive law for natural numbers (left-distributivity). Theorem 4K(3) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nndi ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))

Proof of Theorem nndi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝐶))
21oveq2d 6666 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)))
3 oveq2 6658 . . . . . . 7 (𝑥 = 𝐶 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝐶))
43oveq2d 6666 . . . . . 6 (𝑥 = 𝐶 → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))
52, 4eqeq12d 2637 . . . . 5 (𝑥 = 𝐶 → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) ↔ (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶))))
65imbi2d 330 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))))
7 oveq2 6658 . . . . . . 7 (𝑥 = ∅ → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 ∅))
87oveq2d 6666 . . . . . 6 (𝑥 = ∅ → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 +𝑜 ∅)))
9 oveq2 6658 . . . . . . 7 (𝑥 = ∅ → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 ∅))
109oveq2d 6666 . . . . . 6 (𝑥 = ∅ → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 ∅)))
118, 10eqeq12d 2637 . . . . 5 (𝑥 = ∅ → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) ↔ (𝐴 ·𝑜 (𝐵 +𝑜 ∅)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 ∅))))
12 oveq2 6658 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝑦))
1312oveq2d 6666 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)))
14 oveq2 6658 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝑦))
1514oveq2d 6666 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))
1613, 15eqeq12d 2637 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) ↔ (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))))
17 oveq2 6658 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 suc 𝑦))
1817oveq2d 6666 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)))
19 oveq2 6658 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 suc 𝑦))
2019oveq2d 6666 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦)))
2118, 20eqeq12d 2637 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) ↔ (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦))))
22 nna0 7684 . . . . . . . . 9 (𝐵 ∈ ω → (𝐵 +𝑜 ∅) = 𝐵)
2322adantl 482 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 +𝑜 ∅) = 𝐵)
2423oveq2d 6666 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 (𝐵 +𝑜 ∅)) = (𝐴 ·𝑜 𝐵))
25 nnmcl 7692 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 𝐵) ∈ ω)
26 nna0 7684 . . . . . . . 8 ((𝐴 ·𝑜 𝐵) ∈ ω → ((𝐴 ·𝑜 𝐵) +𝑜 ∅) = (𝐴 ·𝑜 𝐵))
2725, 26syl 17 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·𝑜 𝐵) +𝑜 ∅) = (𝐴 ·𝑜 𝐵))
2824, 27eqtr4d 2659 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 (𝐵 +𝑜 ∅)) = ((𝐴 ·𝑜 𝐵) +𝑜 ∅))
29 nnm0 7685 . . . . . . . 8 (𝐴 ∈ ω → (𝐴 ·𝑜 ∅) = ∅)
3029adantr 481 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 ∅) = ∅)
3130oveq2d 6666 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 ∅)) = ((𝐴 ·𝑜 𝐵) +𝑜 ∅))
3228, 31eqtr4d 2659 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 (𝐵 +𝑜 ∅)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 ∅)))
33 oveq1 6657 . . . . . . . . 9 ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) +𝑜 𝐴) = (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴))
34 nnasuc 7686 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +𝑜 suc 𝑦) = suc (𝐵 +𝑜 𝑦))
35343adant1 1079 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +𝑜 suc 𝑦) = suc (𝐵 +𝑜 𝑦))
3635oveq2d 6666 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = (𝐴 ·𝑜 suc (𝐵 +𝑜 𝑦)))
37 nnacl 7691 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +𝑜 𝑦) ∈ ω)
38 nnmsuc 7687 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ (𝐵 +𝑜 𝑦) ∈ ω) → (𝐴 ·𝑜 suc (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) +𝑜 𝐴))
3937, 38sylan2 491 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝑦 ∈ ω)) → (𝐴 ·𝑜 suc (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) +𝑜 𝐴))
40393impb 1260 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜 suc (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) +𝑜 𝐴))
4136, 40eqtrd 2656 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) +𝑜 𝐴))
42 nnmsuc 7687 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))
43423adant2 1080 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))
4443oveq2d 6666 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))
45 nnmcl 7692 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜 𝑦) ∈ ω)
46 nnaass 7702 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ·𝑜 𝐵) ∈ ω ∧ (𝐴 ·𝑜 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))
4725, 46syl3an1 1359 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ·𝑜 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))
4845, 47syl3an2 1360 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝐴 ∈ ω) → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))
49483exp 1264 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ∈ ω → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))))
5049exp4b 632 . . . . . . . . . . . . . . 15 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 ∈ ω → (𝑦 ∈ ω → (𝐴 ∈ ω → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))))))
5150pm2.43a 54 . . . . . . . . . . . . . 14 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (𝐴 ∈ ω → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))))))
5251com4r 94 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))))))
5352pm2.43i 52 . . . . . . . . . . . 12 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))))
54533imp 1256 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))
5544, 54eqtr4d 2659 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦)) = (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴))
5641, 55eqeq12d 2637 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦)) ↔ ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) +𝑜 𝐴) = (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴)))
5733, 56syl5ibr 236 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦))))
58573exp 1264 . . . . . . 7 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝑦 ∈ ω → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦))))))
5958com3r 87 . . . . . 6 (𝑦 ∈ ω → (𝐴 ∈ ω → (𝐵 ∈ ω → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦))))))
6059impd 447 . . . . 5 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦)))))
6111, 16, 21, 32, 60finds2 7094 . . . 4 (𝑥 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥))))
626, 61vtoclga 3272 . . 3 (𝐶 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶))))
6362expdcom 455 . 2 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐶 ∈ ω → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))))
64633imp 1256 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  c0 3915  suc csuc 5725  (class class class)co 6650  ωcom 7065   +𝑜 coa 7557   ·𝑜 comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-omul 7565
This theorem is referenced by:  nnmass  7704  distrpi  9720
  Copyright terms: Public domain W3C validator