MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnneo Structured version   Visualization version   GIF version

Theorem nnneo 7731
Description: If a natural number is even, its successor is odd. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
nnneo ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2𝑜 ·𝑜 𝐴)) → ¬ suc 𝐶 = (2𝑜 ·𝑜 𝐵))

Proof of Theorem nnneo
StepHypRef Expression
1 nnon 7071 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ On)
2 onnbtwn 5818 . . . 4 (𝐴 ∈ On → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
31, 2syl 17 . . 3 (𝐴 ∈ ω → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
433ad2ant1 1082 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2𝑜 ·𝑜 𝐴)) → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
5 suceq 5790 . . . . 5 (𝐶 = (2𝑜 ·𝑜 𝐴) → suc 𝐶 = suc (2𝑜 ·𝑜 𝐴))
65eqeq1d 2624 . . . 4 (𝐶 = (2𝑜 ·𝑜 𝐴) → (suc 𝐶 = (2𝑜 ·𝑜 𝐵) ↔ suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵)))
763ad2ant3 1084 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2𝑜 ·𝑜 𝐴)) → (suc 𝐶 = (2𝑜 ·𝑜 𝐵) ↔ suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵)))
8 ovex 6678 . . . . . . . 8 (2𝑜 ·𝑜 𝐴) ∈ V
98sucid 5804 . . . . . . 7 (2𝑜 ·𝑜 𝐴) ∈ suc (2𝑜 ·𝑜 𝐴)
10 eleq2 2690 . . . . . . 7 (suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵) → ((2𝑜 ·𝑜 𝐴) ∈ suc (2𝑜 ·𝑜 𝐴) ↔ (2𝑜 ·𝑜 𝐴) ∈ (2𝑜 ·𝑜 𝐵)))
119, 10mpbii 223 . . . . . 6 (suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵) → (2𝑜 ·𝑜 𝐴) ∈ (2𝑜 ·𝑜 𝐵))
12 2onn 7720 . . . . . . . 8 2𝑜 ∈ ω
13 nnmord 7712 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 2𝑜 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 2𝑜) ↔ (2𝑜 ·𝑜 𝐴) ∈ (2𝑜 ·𝑜 𝐵)))
1412, 13mp3an3 1413 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 2𝑜) ↔ (2𝑜 ·𝑜 𝐴) ∈ (2𝑜 ·𝑜 𝐵)))
15 simpl 473 . . . . . . 7 ((𝐴𝐵 ∧ ∅ ∈ 2𝑜) → 𝐴𝐵)
1614, 15syl6bir 244 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((2𝑜 ·𝑜 𝐴) ∈ (2𝑜 ·𝑜 𝐵) → 𝐴𝐵))
1711, 16syl5 34 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵) → 𝐴𝐵))
18 simpr 477 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵)) → suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵))
19 nnmcl 7692 . . . . . . . . . . . . 13 ((2𝑜 ∈ ω ∧ 𝐴 ∈ ω) → (2𝑜 ·𝑜 𝐴) ∈ ω)
2012, 19mpan 706 . . . . . . . . . . . 12 (𝐴 ∈ ω → (2𝑜 ·𝑜 𝐴) ∈ ω)
21 nnon 7071 . . . . . . . . . . . 12 ((2𝑜 ·𝑜 𝐴) ∈ ω → (2𝑜 ·𝑜 𝐴) ∈ On)
22 oa1suc 7611 . . . . . . . . . . . 12 ((2𝑜 ·𝑜 𝐴) ∈ On → ((2𝑜 ·𝑜 𝐴) +𝑜 1𝑜) = suc (2𝑜 ·𝑜 𝐴))
2320, 21, 223syl 18 . . . . . . . . . . 11 (𝐴 ∈ ω → ((2𝑜 ·𝑜 𝐴) +𝑜 1𝑜) = suc (2𝑜 ·𝑜 𝐴))
24 1onn 7719 . . . . . . . . . . . . . . . 16 1𝑜 ∈ ω
2524elexi 3213 . . . . . . . . . . . . . . 15 1𝑜 ∈ V
2625sucid 5804 . . . . . . . . . . . . . 14 1𝑜 ∈ suc 1𝑜
27 df-2o 7561 . . . . . . . . . . . . . 14 2𝑜 = suc 1𝑜
2826, 27eleqtrri 2700 . . . . . . . . . . . . 13 1𝑜 ∈ 2𝑜
29 nnaord 7699 . . . . . . . . . . . . . . 15 ((1𝑜 ∈ ω ∧ 2𝑜 ∈ ω ∧ (2𝑜 ·𝑜 𝐴) ∈ ω) → (1𝑜 ∈ 2𝑜 ↔ ((2𝑜 ·𝑜 𝐴) +𝑜 1𝑜) ∈ ((2𝑜 ·𝑜 𝐴) +𝑜 2𝑜)))
3024, 12, 29mp3an12 1414 . . . . . . . . . . . . . 14 ((2𝑜 ·𝑜 𝐴) ∈ ω → (1𝑜 ∈ 2𝑜 ↔ ((2𝑜 ·𝑜 𝐴) +𝑜 1𝑜) ∈ ((2𝑜 ·𝑜 𝐴) +𝑜 2𝑜)))
3120, 30syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (1𝑜 ∈ 2𝑜 ↔ ((2𝑜 ·𝑜 𝐴) +𝑜 1𝑜) ∈ ((2𝑜 ·𝑜 𝐴) +𝑜 2𝑜)))
3228, 31mpbii 223 . . . . . . . . . . . 12 (𝐴 ∈ ω → ((2𝑜 ·𝑜 𝐴) +𝑜 1𝑜) ∈ ((2𝑜 ·𝑜 𝐴) +𝑜 2𝑜))
33 nnmsuc 7687 . . . . . . . . . . . . 13 ((2𝑜 ∈ ω ∧ 𝐴 ∈ ω) → (2𝑜 ·𝑜 suc 𝐴) = ((2𝑜 ·𝑜 𝐴) +𝑜 2𝑜))
3412, 33mpan 706 . . . . . . . . . . . 12 (𝐴 ∈ ω → (2𝑜 ·𝑜 suc 𝐴) = ((2𝑜 ·𝑜 𝐴) +𝑜 2𝑜))
3532, 34eleqtrrd 2704 . . . . . . . . . . 11 (𝐴 ∈ ω → ((2𝑜 ·𝑜 𝐴) +𝑜 1𝑜) ∈ (2𝑜 ·𝑜 suc 𝐴))
3623, 35eqeltrrd 2702 . . . . . . . . . 10 (𝐴 ∈ ω → suc (2𝑜 ·𝑜 𝐴) ∈ (2𝑜 ·𝑜 suc 𝐴))
3736ad2antrr 762 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵)) → suc (2𝑜 ·𝑜 𝐴) ∈ (2𝑜 ·𝑜 suc 𝐴))
3818, 37eqeltrrd 2702 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵)) → (2𝑜 ·𝑜 𝐵) ∈ (2𝑜 ·𝑜 suc 𝐴))
39 peano2 7086 . . . . . . . . . . 11 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
40 nnmord 7712 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ suc 𝐴 ∈ ω ∧ 2𝑜 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2𝑜) ↔ (2𝑜 ·𝑜 𝐵) ∈ (2𝑜 ·𝑜 suc 𝐴)))
4112, 40mp3an3 1413 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ suc 𝐴 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2𝑜) ↔ (2𝑜 ·𝑜 𝐵) ∈ (2𝑜 ·𝑜 suc 𝐴)))
4239, 41sylan2 491 . . . . . . . . . 10 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2𝑜) ↔ (2𝑜 ·𝑜 𝐵) ∈ (2𝑜 ·𝑜 suc 𝐴)))
4342ancoms 469 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2𝑜) ↔ (2𝑜 ·𝑜 𝐵) ∈ (2𝑜 ·𝑜 suc 𝐴)))
4443adantr 481 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵)) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2𝑜) ↔ (2𝑜 ·𝑜 𝐵) ∈ (2𝑜 ·𝑜 suc 𝐴)))
4538, 44mpbird 247 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵)) → (𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2𝑜))
4645simpld 475 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵)) → 𝐵 ∈ suc 𝐴)
4746ex 450 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵) → 𝐵 ∈ suc 𝐴))
4817, 47jcad 555 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
49483adant3 1081 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2𝑜 ·𝑜 𝐴)) → (suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
507, 49sylbid 230 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2𝑜 ·𝑜 𝐴)) → (suc 𝐶 = (2𝑜 ·𝑜 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
514, 50mtod 189 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2𝑜 ·𝑜 𝐴)) → ¬ suc 𝐶 = (2𝑜 ·𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  c0 3915  Oncon0 5723  suc csuc 5725  (class class class)co 6650  ωcom 7065  1𝑜c1o 7553  2𝑜c2o 7554   +𝑜 coa 7557   ·𝑜 comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565
This theorem is referenced by:  nneob  7732
  Copyright terms: Public domain W3C validator