Proof of Theorem nnneo
| Step | Hyp | Ref
| Expression |
| 1 | | nnon 7071 |
. . . 4
⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
| 2 | | onnbtwn 5818 |
. . . 4
⊢ (𝐴 ∈ On → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) |
| 3 | 1, 2 | syl 17 |
. . 3
⊢ (𝐴 ∈ ω → ¬
(𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) |
| 4 | 3 | 3ad2ant1 1082 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2𝑜
·𝑜 𝐴)) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) |
| 5 | | suceq 5790 |
. . . . 5
⊢ (𝐶 = (2𝑜
·𝑜 𝐴) → suc 𝐶 = suc (2𝑜
·𝑜 𝐴)) |
| 6 | 5 | eqeq1d 2624 |
. . . 4
⊢ (𝐶 = (2𝑜
·𝑜 𝐴) → (suc 𝐶 = (2𝑜
·𝑜 𝐵) ↔ suc (2𝑜
·𝑜 𝐴) = (2𝑜
·𝑜 𝐵))) |
| 7 | 6 | 3ad2ant3 1084 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2𝑜
·𝑜 𝐴)) → (suc 𝐶 = (2𝑜
·𝑜 𝐵) ↔ suc (2𝑜
·𝑜 𝐴) = (2𝑜
·𝑜 𝐵))) |
| 8 | | ovex 6678 |
. . . . . . . 8
⊢
(2𝑜 ·𝑜 𝐴) ∈ V |
| 9 | 8 | sucid 5804 |
. . . . . . 7
⊢
(2𝑜 ·𝑜 𝐴) ∈ suc (2𝑜
·𝑜 𝐴) |
| 10 | | eleq2 2690 |
. . . . . . 7
⊢ (suc
(2𝑜 ·𝑜 𝐴) = (2𝑜
·𝑜 𝐵) → ((2𝑜
·𝑜 𝐴) ∈ suc (2𝑜
·𝑜 𝐴) ↔ (2𝑜
·𝑜 𝐴) ∈ (2𝑜
·𝑜 𝐵))) |
| 11 | 9, 10 | mpbii 223 |
. . . . . 6
⊢ (suc
(2𝑜 ·𝑜 𝐴) = (2𝑜
·𝑜 𝐵) → (2𝑜
·𝑜 𝐴) ∈ (2𝑜
·𝑜 𝐵)) |
| 12 | | 2onn 7720 |
. . . . . . . 8
⊢
2𝑜 ∈ ω |
| 13 | | nnmord 7712 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧
2𝑜 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 2𝑜)
↔ (2𝑜 ·𝑜 𝐴) ∈ (2𝑜
·𝑜 𝐵))) |
| 14 | 12, 13 | mp3an3 1413 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 2𝑜)
↔ (2𝑜 ·𝑜 𝐴) ∈ (2𝑜
·𝑜 𝐵))) |
| 15 | | simpl 473 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 2𝑜)
→ 𝐴 ∈ 𝐵) |
| 16 | 14, 15 | syl6bir 244 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
((2𝑜 ·𝑜 𝐴) ∈ (2𝑜
·𝑜 𝐵) → 𝐴 ∈ 𝐵)) |
| 17 | 11, 16 | syl5 34 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc
(2𝑜 ·𝑜 𝐴) = (2𝑜
·𝑜 𝐵) → 𝐴 ∈ 𝐵)) |
| 18 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc
(2𝑜 ·𝑜 𝐴) = (2𝑜
·𝑜 𝐵)) → suc (2𝑜
·𝑜 𝐴) = (2𝑜
·𝑜 𝐵)) |
| 19 | | nnmcl 7692 |
. . . . . . . . . . . . 13
⊢
((2𝑜 ∈ ω ∧ 𝐴 ∈ ω) →
(2𝑜 ·𝑜 𝐴) ∈ ω) |
| 20 | 12, 19 | mpan 706 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ω →
(2𝑜 ·𝑜 𝐴) ∈ ω) |
| 21 | | nnon 7071 |
. . . . . . . . . . . 12
⊢
((2𝑜 ·𝑜 𝐴) ∈ ω →
(2𝑜 ·𝑜 𝐴) ∈ On) |
| 22 | | oa1suc 7611 |
. . . . . . . . . . . 12
⊢
((2𝑜 ·𝑜 𝐴) ∈ On → ((2𝑜
·𝑜 𝐴) +𝑜
1𝑜) = suc (2𝑜
·𝑜 𝐴)) |
| 23 | 20, 21, 22 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω →
((2𝑜 ·𝑜 𝐴) +𝑜
1𝑜) = suc (2𝑜
·𝑜 𝐴)) |
| 24 | | 1onn 7719 |
. . . . . . . . . . . . . . . 16
⊢
1𝑜 ∈ ω |
| 25 | 24 | elexi 3213 |
. . . . . . . . . . . . . . 15
⊢
1𝑜 ∈ V |
| 26 | 25 | sucid 5804 |
. . . . . . . . . . . . . 14
⊢
1𝑜 ∈ suc 1𝑜 |
| 27 | | df-2o 7561 |
. . . . . . . . . . . . . 14
⊢
2𝑜 = suc 1𝑜 |
| 28 | 26, 27 | eleqtrri 2700 |
. . . . . . . . . . . . 13
⊢
1𝑜 ∈ 2𝑜 |
| 29 | | nnaord 7699 |
. . . . . . . . . . . . . . 15
⊢
((1𝑜 ∈ ω ∧ 2𝑜
∈ ω ∧ (2𝑜 ·𝑜 𝐴) ∈ ω) →
(1𝑜 ∈ 2𝑜 ↔
((2𝑜 ·𝑜 𝐴) +𝑜
1𝑜) ∈ ((2𝑜
·𝑜 𝐴) +𝑜
2𝑜))) |
| 30 | 24, 12, 29 | mp3an12 1414 |
. . . . . . . . . . . . . 14
⊢
((2𝑜 ·𝑜 𝐴) ∈ ω →
(1𝑜 ∈ 2𝑜 ↔
((2𝑜 ·𝑜 𝐴) +𝑜
1𝑜) ∈ ((2𝑜
·𝑜 𝐴) +𝑜
2𝑜))) |
| 31 | 20, 30 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ω →
(1𝑜 ∈ 2𝑜 ↔
((2𝑜 ·𝑜 𝐴) +𝑜
1𝑜) ∈ ((2𝑜
·𝑜 𝐴) +𝑜
2𝑜))) |
| 32 | 28, 31 | mpbii 223 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ω →
((2𝑜 ·𝑜 𝐴) +𝑜
1𝑜) ∈ ((2𝑜
·𝑜 𝐴) +𝑜
2𝑜)) |
| 33 | | nnmsuc 7687 |
. . . . . . . . . . . . 13
⊢
((2𝑜 ∈ ω ∧ 𝐴 ∈ ω) →
(2𝑜 ·𝑜 suc 𝐴) = ((2𝑜
·𝑜 𝐴) +𝑜
2𝑜)) |
| 34 | 12, 33 | mpan 706 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ω →
(2𝑜 ·𝑜 suc 𝐴) = ((2𝑜
·𝑜 𝐴) +𝑜
2𝑜)) |
| 35 | 32, 34 | eleqtrrd 2704 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω →
((2𝑜 ·𝑜 𝐴) +𝑜
1𝑜) ∈ (2𝑜
·𝑜 suc 𝐴)) |
| 36 | 23, 35 | eqeltrrd 2702 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ω → suc
(2𝑜 ·𝑜 𝐴) ∈ (2𝑜
·𝑜 suc 𝐴)) |
| 37 | 36 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc
(2𝑜 ·𝑜 𝐴) = (2𝑜
·𝑜 𝐵)) → suc (2𝑜
·𝑜 𝐴) ∈ (2𝑜
·𝑜 suc 𝐴)) |
| 38 | 18, 37 | eqeltrrd 2702 |
. . . . . . . 8
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc
(2𝑜 ·𝑜 𝐴) = (2𝑜
·𝑜 𝐵)) → (2𝑜
·𝑜 𝐵) ∈ (2𝑜
·𝑜 suc 𝐴)) |
| 39 | | peano2 7086 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω → suc 𝐴 ∈
ω) |
| 40 | | nnmord 7712 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ω ∧ suc 𝐴 ∈ ω ∧
2𝑜 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2𝑜)
↔ (2𝑜 ·𝑜 𝐵) ∈ (2𝑜
·𝑜 suc 𝐴))) |
| 41 | 12, 40 | mp3an3 1413 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ω ∧ suc 𝐴 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2𝑜)
↔ (2𝑜 ·𝑜 𝐵) ∈ (2𝑜
·𝑜 suc 𝐴))) |
| 42 | 39, 41 | sylan2 491 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2𝑜)
↔ (2𝑜 ·𝑜 𝐵) ∈ (2𝑜
·𝑜 suc 𝐴))) |
| 43 | 42 | ancoms 469 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2𝑜)
↔ (2𝑜 ·𝑜 𝐵) ∈ (2𝑜
·𝑜 suc 𝐴))) |
| 44 | 43 | adantr 481 |
. . . . . . . 8
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc
(2𝑜 ·𝑜 𝐴) = (2𝑜
·𝑜 𝐵)) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2𝑜)
↔ (2𝑜 ·𝑜 𝐵) ∈ (2𝑜
·𝑜 suc 𝐴))) |
| 45 | 38, 44 | mpbird 247 |
. . . . . . 7
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc
(2𝑜 ·𝑜 𝐴) = (2𝑜
·𝑜 𝐵)) → (𝐵 ∈ suc 𝐴 ∧ ∅ ∈
2𝑜)) |
| 46 | 45 | simpld 475 |
. . . . . 6
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc
(2𝑜 ·𝑜 𝐴) = (2𝑜
·𝑜 𝐵)) → 𝐵 ∈ suc 𝐴) |
| 47 | 46 | ex 450 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc
(2𝑜 ·𝑜 𝐴) = (2𝑜
·𝑜 𝐵) → 𝐵 ∈ suc 𝐴)) |
| 48 | 17, 47 | jcad 555 |
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc
(2𝑜 ·𝑜 𝐴) = (2𝑜
·𝑜 𝐵) → (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴))) |
| 49 | 48 | 3adant3 1081 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2𝑜
·𝑜 𝐴)) → (suc (2𝑜
·𝑜 𝐴) = (2𝑜
·𝑜 𝐵) → (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴))) |
| 50 | 7, 49 | sylbid 230 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2𝑜
·𝑜 𝐴)) → (suc 𝐶 = (2𝑜
·𝑜 𝐵) → (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴))) |
| 51 | 4, 50 | mtod 189 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2𝑜
·𝑜 𝐴)) → ¬ suc 𝐶 = (2𝑜
·𝑜 𝐵)) |