Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nolt02olem Structured version   Visualization version   Unicode version

Theorem nolt02olem 31844
Description: Lemma for nolt02o 31845. If  A ( X ) is undefined with  A surreal and  X ordinal, then  dom  A  C_  X. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nolt02olem  |-  ( ( A  e.  No  /\  X  e.  On  /\  ( A `  X )  =  (/) )  ->  dom  A 
C_  X )

Proof of Theorem nolt02olem
StepHypRef Expression
1 nosgnn0 31811 . . . 4  |-  -.  (/)  e.  { 1o ,  2o }
21a1i 11 . . 3  |-  ( ( A  e.  No  /\  X  e.  On  /\  ( A `  X )  =  (/) )  ->  -.  (/) 
e.  { 1o ,  2o } )
3 simpl3 1066 . . . 4  |-  ( ( ( A  e.  No  /\  X  e.  On  /\  ( A `  X )  =  (/) )  /\  X  e.  dom  A )  -> 
( A `  X
)  =  (/) )
4 simpl1 1064 . . . . . 6  |-  ( ( ( A  e.  No  /\  X  e.  On  /\  ( A `  X )  =  (/) )  /\  X  e.  dom  A )  ->  A  e.  No )
5 norn 31804 . . . . . 6  |-  ( A  e.  No  ->  ran  A 
C_  { 1o ,  2o } )
64, 5syl 17 . . . . 5  |-  ( ( ( A  e.  No  /\  X  e.  On  /\  ( A `  X )  =  (/) )  /\  X  e.  dom  A )  ->  ran  A  C_  { 1o ,  2o } )
7 nofun 31802 . . . . . . 7  |-  ( A  e.  No  ->  Fun  A )
873ad2ant1 1082 . . . . . 6  |-  ( ( A  e.  No  /\  X  e.  On  /\  ( A `  X )  =  (/) )  ->  Fun  A )
9 fvelrn 6352 . . . . . 6  |-  ( ( Fun  A  /\  X  e.  dom  A )  -> 
( A `  X
)  e.  ran  A
)
108, 9sylan 488 . . . . 5  |-  ( ( ( A  e.  No  /\  X  e.  On  /\  ( A `  X )  =  (/) )  /\  X  e.  dom  A )  -> 
( A `  X
)  e.  ran  A
)
116, 10sseldd 3604 . . . 4  |-  ( ( ( A  e.  No  /\  X  e.  On  /\  ( A `  X )  =  (/) )  /\  X  e.  dom  A )  -> 
( A `  X
)  e.  { 1o ,  2o } )
123, 11eqeltrrd 2702 . . 3  |-  ( ( ( A  e.  No  /\  X  e.  On  /\  ( A `  X )  =  (/) )  /\  X  e.  dom  A )  ->  (/) 
e.  { 1o ,  2o } )
132, 12mtand 691 . 2  |-  ( ( A  e.  No  /\  X  e.  On  /\  ( A `  X )  =  (/) )  ->  -.  X  e.  dom  A )
14 nodmon 31803 . . . 4  |-  ( A  e.  No  ->  dom  A  e.  On )
15143ad2ant1 1082 . . 3  |-  ( ( A  e.  No  /\  X  e.  On  /\  ( A `  X )  =  (/) )  ->  dom  A  e.  On )
16 simp2 1062 . . 3  |-  ( ( A  e.  No  /\  X  e.  On  /\  ( A `  X )  =  (/) )  ->  X  e.  On )
17 ontri1 5757 . . 3  |-  ( ( dom  A  e.  On  /\  X  e.  On )  ->  ( dom  A  C_  X  <->  -.  X  e.  dom  A ) )
1815, 16, 17syl2anc 693 . 2  |-  ( ( A  e.  No  /\  X  e.  On  /\  ( A `  X )  =  (/) )  ->  ( dom  A  C_  X  <->  -.  X  e.  dom  A ) )
1913, 18mpbird 247 1  |-  ( ( A  e.  No  /\  X  e.  On  /\  ( A `  X )  =  (/) )  ->  dom  A 
C_  X )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   (/)c0 3915   {cpr 4179   dom cdm 5114   ran crn 5115   Oncon0 5723   Fun wfun 5882   ` cfv 5888   1oc1o 7553   2oc2o 7554   Nocsur 31793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796
This theorem is referenced by:  nolt02o  31845
  Copyright terms: Public domain W3C validator