Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noresle Structured version   Visualization version   GIF version

Theorem noresle 31846
Description: Restriction law for surreals. Lemma 2.1.4 of [Lipparini] p. 3. (Contributed by Scott Fenton, 5-Dec-2021.)
Assertion
Ref Expression
noresle (((𝑈 No 𝑆 No ) ∧ (dom 𝑈𝐴 ∧ dom 𝑆𝐴 ∧ ∀𝑔𝐴 ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ 𝑆 <s 𝑈)
Distinct variable groups:   𝑆,𝑔   𝑈,𝑔   𝐴,𝑔

Proof of Theorem noresle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unss 3787 . . . 4 ((dom 𝑈𝐴 ∧ dom 𝑆𝐴) ↔ (dom 𝑈 ∪ dom 𝑆) ⊆ 𝐴)
2 ssralv 3666 . . . 4 ((dom 𝑈 ∪ dom 𝑆) ⊆ 𝐴 → (∀𝑔𝐴 ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔) → ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔)))
31, 2sylbi 207 . . 3 ((dom 𝑈𝐴 ∧ dom 𝑆𝐴) → (∀𝑔𝐴 ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔) → ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔)))
433impia 1261 . 2 ((dom 𝑈𝐴 ∧ dom 𝑆𝐴 ∧ ∀𝑔𝐴 ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔)) → ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))
5 breq1 4656 . . . . . . . 8 (𝑈 = 𝑆 → (𝑈 <s 𝑈𝑆 <s 𝑈))
65notbid 308 . . . . . . 7 (𝑈 = 𝑆 → (¬ 𝑈 <s 𝑈 ↔ ¬ 𝑆 <s 𝑈))
76biimpd 219 . . . . . 6 (𝑈 = 𝑆 → (¬ 𝑈 <s 𝑈 → ¬ 𝑆 <s 𝑈))
8 sltso 31827 . . . . . . . 8 <s Or No
9 sonr 5056 . . . . . . . 8 (( <s Or No 𝑈 No ) → ¬ 𝑈 <s 𝑈)
108, 9mpan 706 . . . . . . 7 (𝑈 No → ¬ 𝑈 <s 𝑈)
1110adantr 481 . . . . . 6 ((𝑈 No 𝑆 No ) → ¬ 𝑈 <s 𝑈)
127, 11impel 485 . . . . 5 ((𝑈 = 𝑆 ∧ (𝑈 No 𝑆 No )) → ¬ 𝑆 <s 𝑈)
1312adantrr 753 . . . 4 ((𝑈 = 𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ 𝑆 <s 𝑈)
1413ex 450 . . 3 (𝑈 = 𝑆 → (((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔)) → ¬ 𝑆 <s 𝑈))
15 simprl 794 . . . . 5 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → (𝑈 No 𝑆 No ))
16 simprll 802 . . . . . . . . . . 11 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → 𝑈 No )
17 simprlr 803 . . . . . . . . . . 11 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → 𝑆 No )
18 simpl 473 . . . . . . . . . . 11 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → 𝑈𝑆)
19 nosepne 31831 . . . . . . . . . . 11 ((𝑈 No 𝑆 No 𝑈𝑆) → (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ≠ (𝑆 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
2016, 17, 18, 19syl3anc 1326 . . . . . . . . . 10 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ≠ (𝑆 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
21 nosepon 31818 . . . . . . . . . . . . 13 ((𝑈 No 𝑆 No 𝑈𝑆) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ On)
2216, 17, 18, 21syl3anc 1326 . . . . . . . . . . . 12 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ On)
23 sucidg 5803 . . . . . . . . . . . 12 ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ On → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})
2422, 23syl 17 . . . . . . . . . . 11 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})
2524fvresd 6208 . . . . . . . . . 10 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) = (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
2624fvresd 6208 . . . . . . . . . 10 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ((𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) = (𝑆 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
2720, 25, 263netr4d 2871 . . . . . . . . 9 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ≠ ((𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
2827neneqd 2799 . . . . . . . 8 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) = ((𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
29 fveq1 6190 . . . . . . . 8 ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) = (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) → ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) = ((𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
3028, 29nsyl 135 . . . . . . 7 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) = (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
31 nosepdm 31834 . . . . . . . . 9 ((𝑈 No 𝑆 No 𝑈𝑆) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ (dom 𝑈 ∪ dom 𝑆))
3216, 17, 18, 31syl3anc 1326 . . . . . . . 8 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ (dom 𝑈 ∪ dom 𝑆))
33 simprr 796 . . . . . . . 8 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))
34 suceq 5790 . . . . . . . . . . . 12 (𝑔 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} → suc 𝑔 = suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})
3534reseq2d 5396 . . . . . . . . . . 11 (𝑔 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} → (𝑆 ↾ suc 𝑔) = (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
3634reseq2d 5396 . . . . . . . . . . 11 (𝑔 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} → (𝑈 ↾ suc 𝑔) = (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
3735, 36breq12d 4666 . . . . . . . . . 10 (𝑔 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} → ((𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔) ↔ (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})))
3837notbid 308 . . . . . . . . 9 (𝑔 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} → (¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔) ↔ ¬ (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})))
3938rspcv 3305 . . . . . . . 8 ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ (dom 𝑈 ∪ dom 𝑆) → (∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔) → ¬ (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})))
4032, 33, 39sylc 65 . . . . . . 7 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
41 suceloni 7013 . . . . . . . . . 10 ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ On → suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ On)
4222, 41syl 17 . . . . . . . . 9 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ On)
43 noreson 31813 . . . . . . . . 9 ((𝑈 No ∧ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ On) → (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∈ No )
4416, 42, 43syl2anc 693 . . . . . . . 8 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∈ No )
45 noreson 31813 . . . . . . . . 9 ((𝑆 No ∧ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ On) → (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∈ No )
4617, 42, 45syl2anc 693 . . . . . . . 8 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∈ No )
47 solin 5058 . . . . . . . . 9 (( <s Or No ∧ ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∈ No ∧ (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∈ No )) → ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∨ (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) = (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∨ (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})))
488, 47mpan 706 . . . . . . . 8 (((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∈ No ∧ (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∈ No ) → ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∨ (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) = (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∨ (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})))
4944, 46, 48syl2anc 693 . . . . . . 7 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∨ (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) = (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∨ (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})))
5030, 40, 49ecase23d 1436 . . . . . 6 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
51 sltres 31815 . . . . . . 7 ((𝑈 No 𝑆 No ∧ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ On) → ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) → 𝑈 <s 𝑆))
5216, 17, 42, 51syl3anc 1326 . . . . . 6 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) → 𝑈 <s 𝑆))
5350, 52mpd 15 . . . . 5 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → 𝑈 <s 𝑆)
54 soasym 31657 . . . . . 6 (( <s Or No ∧ (𝑈 No 𝑆 No )) → (𝑈 <s 𝑆 → ¬ 𝑆 <s 𝑈))
558, 54mpan 706 . . . . 5 ((𝑈 No 𝑆 No ) → (𝑈 <s 𝑆 → ¬ 𝑆 <s 𝑈))
5615, 53, 55sylc 65 . . . 4 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ 𝑆 <s 𝑈)
5756ex 450 . . 3 (𝑈𝑆 → (((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔)) → ¬ 𝑆 <s 𝑈))
5814, 57pm2.61ine 2877 . 2 (((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔)) → ¬ 𝑆 <s 𝑈)
594, 58sylan2 491 1 (((𝑈 No 𝑆 No ) ∧ (dom 𝑈𝐴 ∧ dom 𝑆𝐴 ∧ ∀𝑔𝐴 ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ 𝑆 <s 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  cun 3572  wss 3574   cint 4475   class class class wbr 4653   Or wor 5034  dom cdm 5114  cres 5116  Oncon0 5723  suc csuc 5725  cfv 5888   No csur 31793   <s cslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797
This theorem is referenced by:  nosupbnd1lem1  31854  nosupbnd2  31862
  Copyright terms: Public domain W3C validator