MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0m1 Structured version   Visualization version   GIF version

Theorem oe0m1 7601
Description: Ordinal exponentiation with zero mantissa and nonzero exponent. Proposition 8.31(2) of [TakeutiZaring] p. 67 and its converse. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
oe0m1 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑𝑜 𝐴) = ∅))

Proof of Theorem oe0m1
StepHypRef Expression
1 eloni 5733 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 ordgt0ge1 7577 . . 3 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1𝑜𝐴))
31, 2syl 17 . 2 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1𝑜𝐴))
4 oe0m 7598 . . . 4 (𝐴 ∈ On → (∅ ↑𝑜 𝐴) = (1𝑜𝐴))
54eqeq1d 2624 . . 3 (𝐴 ∈ On → ((∅ ↑𝑜 𝐴) = ∅ ↔ (1𝑜𝐴) = ∅))
6 ssdif0 3942 . . 3 (1𝑜𝐴 ↔ (1𝑜𝐴) = ∅)
75, 6syl6rbbr 279 . 2 (𝐴 ∈ On → (1𝑜𝐴 ↔ (∅ ↑𝑜 𝐴) = ∅))
83, 7bitrd 268 1 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑𝑜 𝐴) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  cdif 3571  wss 3574  c0 3915  Ord word 5722  Oncon0 5723  (class class class)co 6650  1𝑜c1o 7553  𝑜 coe 7559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oexp 7566
This theorem is referenced by:  oev2  7603  oesuclem  7605  oecl  7617  oewordri  7672  oelim2  7675  oeoa  7677  oeoe  7679  cantnf  8590
  Copyright terms: Public domain W3C validator