MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordgt0ge1 Structured version   Visualization version   GIF version

Theorem ordgt0ge1 7577
Description: Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
ordgt0ge1 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1𝑜𝐴))

Proof of Theorem ordgt0ge1
StepHypRef Expression
1 0elon 5778 . . 3 ∅ ∈ On
2 ordelsuc 7020 . . 3 ((∅ ∈ On ∧ Ord 𝐴) → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴))
31, 2mpan 706 . 2 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ suc ∅ ⊆ 𝐴))
4 df-1o 7560 . . 3 1𝑜 = suc ∅
54sseq1i 3629 . 2 (1𝑜𝐴 ↔ suc ∅ ⊆ 𝐴)
63, 5syl6bbr 278 1 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1𝑜𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 1990  wss 3574  c0 3915  Ord word 5722  Oncon0 5723  suc csuc 5725  1𝑜c1o 7553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729  df-1o 7560
This theorem is referenced by:  ordge1n0  7578  oe0m1  7601  omword1  7653  omword2  7654  omlimcl  7658  oen0  7666  oewordi  7671
  Copyright terms: Public domain W3C validator