![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oev | Structured version Visualization version GIF version |
Description: Value of ordinal exponentiation. (Contributed by NM, 30-Dec-2004.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
oev | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑𝑜 𝐵) = if(𝐴 = ∅, (1𝑜 ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2626 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 = ∅ ↔ 𝐴 = ∅)) | |
2 | oveq2 6658 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ·𝑜 𝑦) = (𝑥 ·𝑜 𝐴)) | |
3 | 2 | mpteq2dv 4745 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴))) |
4 | rdgeq1 7507 | . . . . 5 ⊢ ((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)), 1𝑜) = rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)), 1𝑜) = rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)) |
6 | 5 | fveq1d 6193 | . . 3 ⊢ (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)), 1𝑜)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝑧)) |
7 | 1, 6 | ifbieq2d 4111 | . 2 ⊢ (𝑦 = 𝐴 → if(𝑦 = ∅, (1𝑜 ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)), 1𝑜)‘𝑧)) = if(𝐴 = ∅, (1𝑜 ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝑧))) |
8 | difeq2 3722 | . . 3 ⊢ (𝑧 = 𝐵 → (1𝑜 ∖ 𝑧) = (1𝑜 ∖ 𝐵)) | |
9 | fveq2 6191 | . . 3 ⊢ (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)) | |
10 | 8, 9 | ifeq12d 4106 | . 2 ⊢ (𝑧 = 𝐵 → if(𝐴 = ∅, (1𝑜 ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝑧)) = if(𝐴 = ∅, (1𝑜 ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))) |
11 | df-oexp 7566 | . 2 ⊢ ↑𝑜 = (𝑦 ∈ On, 𝑧 ∈ On ↦ if(𝑦 = ∅, (1𝑜 ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)), 1𝑜)‘𝑧))) | |
12 | 1on 7567 | . . . . 5 ⊢ 1𝑜 ∈ On | |
13 | 12 | elexi 3213 | . . . 4 ⊢ 1𝑜 ∈ V |
14 | difss 3737 | . . . 4 ⊢ (1𝑜 ∖ 𝐵) ⊆ 1𝑜 | |
15 | 13, 14 | ssexi 4803 | . . 3 ⊢ (1𝑜 ∖ 𝐵) ∈ V |
16 | fvex 6201 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∈ V | |
17 | 15, 16 | ifex 4156 | . 2 ⊢ if(𝐴 = ∅, (1𝑜 ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)) ∈ V |
18 | 7, 10, 11, 17 | ovmpt2 6796 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑𝑜 𝐵) = if(𝐴 = ∅, (1𝑜 ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∖ cdif 3571 ∅c0 3915 ifcif 4086 ↦ cmpt 4729 Oncon0 5723 ‘cfv 5888 (class class class)co 6650 reccrdg 7505 1𝑜c1o 7553 ·𝑜 comu 7558 ↑𝑜 coe 7559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oexp 7566 |
This theorem is referenced by: oevn0 7595 oe0m 7598 |
Copyright terms: Public domain | W3C validator |