MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oev Structured version   Visualization version   Unicode version

Theorem oev 7594
Description: Value of ordinal exponentiation. (Contributed by NM, 30-Dec-2004.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
oev  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ^o  B
)  =  if ( A  =  (/) ,  ( 1o  \  B ) ,  ( rec (
( x  e.  _V  |->  ( x  .o  A
) ) ,  1o ) `  B )
) )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem oev
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2626 . . 3  |-  ( y  =  A  ->  (
y  =  (/)  <->  A  =  (/) ) )
2 oveq2 6658 . . . . . 6  |-  ( y  =  A  ->  (
x  .o  y )  =  ( x  .o  A ) )
32mpteq2dv 4745 . . . . 5  |-  ( y  =  A  ->  (
x  e.  _V  |->  ( x  .o  y ) )  =  ( x  e.  _V  |->  ( x  .o  A ) ) )
4 rdgeq1 7507 . . . . 5  |-  ( ( x  e.  _V  |->  ( x  .o  y ) )  =  ( x  e.  _V  |->  ( x  .o  A ) )  ->  rec ( ( x  e.  _V  |->  ( x  .o  y ) ) ,  1o )  =  rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) )
53, 4syl 17 . . . 4  |-  ( y  =  A  ->  rec ( ( x  e. 
_V  |->  ( x  .o  y ) ) ,  1o )  =  rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) )
65fveq1d 6193 . . 3  |-  ( y  =  A  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  y ) ) ,  1o ) `  z
)  =  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  z
) )
71, 6ifbieq2d 4111 . 2  |-  ( y  =  A  ->  if ( y  =  (/) ,  ( 1o  \  z
) ,  ( rec ( ( x  e. 
_V  |->  ( x  .o  y ) ) ,  1o ) `  z
) )  =  if ( A  =  (/) ,  ( 1o  \  z
) ,  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  z
) ) )
8 difeq2 3722 . . 3  |-  ( z  =  B  ->  ( 1o  \  z )  =  ( 1o  \  B
) )
9 fveq2 6191 . . 3  |-  ( z  =  B  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  z
)  =  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
) )
108, 9ifeq12d 4106 . 2  |-  ( z  =  B  ->  if ( A  =  (/) ,  ( 1o  \  z ) ,  ( rec (
( x  e.  _V  |->  ( x  .o  A
) ) ,  1o ) `  z )
)  =  if ( A  =  (/) ,  ( 1o  \  B ) ,  ( rec (
( x  e.  _V  |->  ( x  .o  A
) ) ,  1o ) `  B )
) )
11 df-oexp 7566 . 2  |-  ^o  =  ( y  e.  On ,  z  e.  On  |->  if ( y  =  (/) ,  ( 1o  \  z
) ,  ( rec ( ( x  e. 
_V  |->  ( x  .o  y ) ) ,  1o ) `  z
) ) )
12 1on 7567 . . . . 5  |-  1o  e.  On
1312elexi 3213 . . . 4  |-  1o  e.  _V
14 difss 3737 . . . 4  |-  ( 1o 
\  B )  C_  1o
1513, 14ssexi 4803 . . 3  |-  ( 1o 
\  B )  e. 
_V
16 fvex 6201 . . 3  |-  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
)  e.  _V
1715, 16ifex 4156 . 2  |-  if ( A  =  (/) ,  ( 1o  \  B ) ,  ( rec (
( x  e.  _V  |->  ( x  .o  A
) ) ,  1o ) `  B )
)  e.  _V
187, 10, 11, 17ovmpt2 6796 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ^o  B
)  =  if ( A  =  (/) ,  ( 1o  \  B ) ,  ( rec (
( x  e.  _V  |->  ( x  .o  A
) ) ,  1o ) `  B )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571   (/)c0 3915   ifcif 4086    |-> cmpt 4729   Oncon0 5723   ` cfv 5888  (class class class)co 6650   reccrdg 7505   1oc1o 7553    .o comu 7558    ^o coe 7559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oexp 7566
This theorem is referenced by:  oevn0  7595  oe0m  7598
  Copyright terms: Public domain W3C validator