MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om0r Structured version   Visualization version   GIF version

Theorem om0r 7619
Description: Ordinal multiplication with zero. Proposition 8.18(1) of [TakeutiZaring] p. 63. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
om0r (𝐴 ∈ On → (∅ ·𝑜 𝐴) = ∅)

Proof of Theorem om0r
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . 3 (𝑥 = ∅ → (∅ ·𝑜 𝑥) = (∅ ·𝑜 ∅))
21eqeq1d 2624 . 2 (𝑥 = ∅ → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 ∅) = ∅))
3 oveq2 6658 . . 3 (𝑥 = 𝑦 → (∅ ·𝑜 𝑥) = (∅ ·𝑜 𝑦))
43eqeq1d 2624 . 2 (𝑥 = 𝑦 → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 𝑦) = ∅))
5 oveq2 6658 . . 3 (𝑥 = suc 𝑦 → (∅ ·𝑜 𝑥) = (∅ ·𝑜 suc 𝑦))
65eqeq1d 2624 . 2 (𝑥 = suc 𝑦 → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 suc 𝑦) = ∅))
7 oveq2 6658 . . 3 (𝑥 = 𝐴 → (∅ ·𝑜 𝑥) = (∅ ·𝑜 𝐴))
87eqeq1d 2624 . 2 (𝑥 = 𝐴 → ((∅ ·𝑜 𝑥) = ∅ ↔ (∅ ·𝑜 𝐴) = ∅))
9 om0x 7599 . 2 (∅ ·𝑜 ∅) = ∅
10 oveq1 6657 . . 3 ((∅ ·𝑜 𝑦) = ∅ → ((∅ ·𝑜 𝑦) +𝑜 ∅) = (∅ +𝑜 ∅))
11 0elon 5778 . . . . 5 ∅ ∈ On
12 omsuc 7606 . . . . 5 ((∅ ∈ On ∧ 𝑦 ∈ On) → (∅ ·𝑜 suc 𝑦) = ((∅ ·𝑜 𝑦) +𝑜 ∅))
1311, 12mpan 706 . . . 4 (𝑦 ∈ On → (∅ ·𝑜 suc 𝑦) = ((∅ ·𝑜 𝑦) +𝑜 ∅))
14 oa0 7596 . . . . . . 7 (∅ ∈ On → (∅ +𝑜 ∅) = ∅)
1511, 14ax-mp 5 . . . . . 6 (∅ +𝑜 ∅) = ∅
1615eqcomi 2631 . . . . 5 ∅ = (∅ +𝑜 ∅)
1716a1i 11 . . . 4 (𝑦 ∈ On → ∅ = (∅ +𝑜 ∅))
1813, 17eqeq12d 2637 . . 3 (𝑦 ∈ On → ((∅ ·𝑜 suc 𝑦) = ∅ ↔ ((∅ ·𝑜 𝑦) +𝑜 ∅) = (∅ +𝑜 ∅)))
1910, 18syl5ibr 236 . 2 (𝑦 ∈ On → ((∅ ·𝑜 𝑦) = ∅ → (∅ ·𝑜 suc 𝑦) = ∅))
20 iuneq2 4537 . . . 4 (∀𝑦𝑥 (∅ ·𝑜 𝑦) = ∅ → 𝑦𝑥 (∅ ·𝑜 𝑦) = 𝑦𝑥 ∅)
21 iun0 4576 . . . 4 𝑦𝑥 ∅ = ∅
2220, 21syl6eq 2672 . . 3 (∀𝑦𝑥 (∅ ·𝑜 𝑦) = ∅ → 𝑦𝑥 (∅ ·𝑜 𝑦) = ∅)
23 vex 3203 . . . . 5 𝑥 ∈ V
24 omlim 7613 . . . . . 6 ((∅ ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∅ ·𝑜 𝑥) = 𝑦𝑥 (∅ ·𝑜 𝑦))
2511, 24mpan 706 . . . . 5 ((𝑥 ∈ V ∧ Lim 𝑥) → (∅ ·𝑜 𝑥) = 𝑦𝑥 (∅ ·𝑜 𝑦))
2623, 25mpan 706 . . . 4 (Lim 𝑥 → (∅ ·𝑜 𝑥) = 𝑦𝑥 (∅ ·𝑜 𝑦))
2726eqeq1d 2624 . . 3 (Lim 𝑥 → ((∅ ·𝑜 𝑥) = ∅ ↔ 𝑦𝑥 (∅ ·𝑜 𝑦) = ∅))
2822, 27syl5ibr 236 . 2 (Lim 𝑥 → (∀𝑦𝑥 (∅ ·𝑜 𝑦) = ∅ → (∅ ·𝑜 𝑥) = ∅))
292, 4, 6, 8, 9, 19, 28tfinds 7059 1 (𝐴 ∈ On → (∅ ·𝑜 𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  c0 3915   ciun 4520  Oncon0 5723  Lim wlim 5724  suc csuc 5725  (class class class)co 6650   +𝑜 coa 7557   ·𝑜 comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-omul 7565
This theorem is referenced by:  omord  7648  omwordi  7651  om00  7655  odi  7659  omass  7660  oeoa  7677  omxpenlem  8061
  Copyright terms: Public domain W3C validator