| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omopthi | Structured version Visualization version Unicode version | ||
| Description: An ordered pair theorem
for |
| Ref | Expression |
|---|---|
| omopth.1 |
|
| omopth.2 |
|
| omopth.3 |
|
| omopth.4 |
|
| Ref | Expression |
|---|---|
| omopthi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omopth.1 |
. . . . . . . . . . . . 13
| |
| 2 | omopth.2 |
. . . . . . . . . . . . 13
| |
| 3 | 1, 2 | nnacli 7694 |
. . . . . . . . . . . 12
|
| 4 | 3 | nnoni 7072 |
. . . . . . . . . . 11
|
| 5 | 4 | onordi 5832 |
. . . . . . . . . 10
|
| 6 | omopth.3 |
. . . . . . . . . . . . 13
| |
| 7 | omopth.4 |
. . . . . . . . . . . . 13
| |
| 8 | 6, 7 | nnacli 7694 |
. . . . . . . . . . . 12
|
| 9 | 8 | nnoni 7072 |
. . . . . . . . . . 11
|
| 10 | 9 | onordi 5832 |
. . . . . . . . . 10
|
| 11 | ordtri3 5759 |
. . . . . . . . . 10
| |
| 12 | 5, 10, 11 | mp2an 708 |
. . . . . . . . 9
|
| 13 | 12 | con2bii 347 |
. . . . . . . 8
|
| 14 | 1, 2, 8, 7 | omopthlem2 7736 |
. . . . . . . . . 10
|
| 15 | eqcom 2629 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | sylnib 318 |
. . . . . . . . 9
|
| 17 | 6, 7, 3, 2 | omopthlem2 7736 |
. . . . . . . . 9
|
| 18 | 16, 17 | jaoi 394 |
. . . . . . . 8
|
| 19 | 13, 18 | sylbir 225 |
. . . . . . 7
|
| 20 | 19 | con4i 113 |
. . . . . 6
|
| 21 | id 22 |
. . . . . . . . 9
| |
| 22 | 20, 20 | oveq12d 6668 |
. . . . . . . . . 10
|
| 23 | 22 | oveq1d 6665 |
. . . . . . . . 9
|
| 24 | 21, 23 | eqtr4d 2659 |
. . . . . . . 8
|
| 25 | 3, 3 | nnmcli 7695 |
. . . . . . . . 9
|
| 26 | nnacan 7708 |
. . . . . . . . 9
| |
| 27 | 25, 2, 7, 26 | mp3an 1424 |
. . . . . . . 8
|
| 28 | 24, 27 | sylib 208 |
. . . . . . 7
|
| 29 | 28 | oveq2d 6666 |
. . . . . 6
|
| 30 | 20, 29 | eqtr4d 2659 |
. . . . 5
|
| 31 | nnacom 7697 |
. . . . . 6
| |
| 32 | 2, 1, 31 | mp2an 708 |
. . . . 5
|
| 33 | nnacom 7697 |
. . . . . 6
| |
| 34 | 2, 6, 33 | mp2an 708 |
. . . . 5
|
| 35 | 30, 32, 34 | 3eqtr4g 2681 |
. . . 4
|
| 36 | nnacan 7708 |
. . . . 5
| |
| 37 | 2, 1, 6, 36 | mp3an 1424 |
. . . 4
|
| 38 | 35, 37 | sylib 208 |
. . 3
|
| 39 | 38, 28 | jca 554 |
. 2
|
| 40 | oveq12 6659 |
. . . 4
| |
| 41 | 40, 40 | oveq12d 6668 |
. . 3
|
| 42 | simpr 477 |
. . 3
| |
| 43 | 41, 42 | oveq12d 6668 |
. 2
|
| 44 | 39, 43 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-omul 7565 |
| This theorem is referenced by: omopth 7738 |
| Copyright terms: Public domain | W3C validator |