MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthi Structured version   Visualization version   Unicode version

Theorem omopthi 7737
Description: An ordered pair theorem for  om. Theorem 17.3 of [Quine] p. 124. This proof is adapted from nn0opthi 13057. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopth.1  |-  A  e. 
om
omopth.2  |-  B  e. 
om
omopth.3  |-  C  e. 
om
omopth.4  |-  D  e. 
om
Assertion
Ref Expression
omopthi  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  <->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem omopthi
StepHypRef Expression
1 omopth.1 . . . . . . . . . . . . 13  |-  A  e. 
om
2 omopth.2 . . . . . . . . . . . . 13  |-  B  e. 
om
31, 2nnacli 7694 . . . . . . . . . . . 12  |-  ( A  +o  B )  e. 
om
43nnoni 7072 . . . . . . . . . . 11  |-  ( A  +o  B )  e.  On
54onordi 5832 . . . . . . . . . 10  |-  Ord  ( A  +o  B )
6 omopth.3 . . . . . . . . . . . . 13  |-  C  e. 
om
7 omopth.4 . . . . . . . . . . . . 13  |-  D  e. 
om
86, 7nnacli 7694 . . . . . . . . . . . 12  |-  ( C  +o  D )  e. 
om
98nnoni 7072 . . . . . . . . . . 11  |-  ( C  +o  D )  e.  On
109onordi 5832 . . . . . . . . . 10  |-  Ord  ( C  +o  D )
11 ordtri3 5759 . . . . . . . . . 10  |-  ( ( Ord  ( A  +o  B )  /\  Ord  ( C  +o  D
) )  ->  (
( A  +o  B
)  =  ( C  +o  D )  <->  -.  (
( A  +o  B
)  e.  ( C  +o  D )  \/  ( C  +o  D
)  e.  ( A  +o  B ) ) ) )
125, 10, 11mp2an 708 . . . . . . . . 9  |-  ( ( A  +o  B )  =  ( C  +o  D )  <->  -.  (
( A  +o  B
)  e.  ( C  +o  D )  \/  ( C  +o  D
)  e.  ( A  +o  B ) ) )
1312con2bii 347 . . . . . . . 8  |-  ( ( ( A  +o  B
)  e.  ( C  +o  D )  \/  ( C  +o  D
)  e.  ( A  +o  B ) )  <->  -.  ( A  +o  B
)  =  ( C  +o  D ) )
141, 2, 8, 7omopthlem2 7736 . . . . . . . . . 10  |-  ( ( A  +o  B )  e.  ( C  +o  D )  ->  -.  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  =  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  B ) )
15 eqcom 2629 . . . . . . . . . 10  |-  ( ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  =  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  <->  ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D ) )
1614, 15sylnib 318 . . . . . . . . 9  |-  ( ( A  +o  B )  e.  ( C  +o  D )  ->  -.  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  =  ( ( ( C  +o  D
)  .o  ( C  +o  D ) )  +o  D ) )
176, 7, 3, 2omopthlem2 7736 . . . . . . . . 9  |-  ( ( C  +o  D )  e.  ( A  +o  B )  ->  -.  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  =  ( ( ( C  +o  D
)  .o  ( C  +o  D ) )  +o  D ) )
1816, 17jaoi 394 . . . . . . . 8  |-  ( ( ( A  +o  B
)  e.  ( C  +o  D )  \/  ( C  +o  D
)  e.  ( A  +o  B ) )  ->  -.  ( (
( A  +o  B
)  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
) )
1913, 18sylbir 225 . . . . . . 7  |-  ( -.  ( A  +o  B
)  =  ( C  +o  D )  ->  -.  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  =  ( ( ( C  +o  D
)  .o  ( C  +o  D ) )  +o  D ) )
2019con4i 113 . . . . . 6  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  ( A  +o  B )  =  ( C  +o  D ) )
21 id 22 . . . . . . . . 9  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  ( (
( A  +o  B
)  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
) )
2220, 20oveq12d 6668 . . . . . . . . . 10  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  ( ( A  +o  B )  .o  ( A  +o  B
) )  =  ( ( C  +o  D
)  .o  ( C  +o  D ) ) )
2322oveq1d 6665 . . . . . . . . 9  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  ( (
( A  +o  B
)  .o  ( A  +o  B ) )  +o  D )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
) )
2421, 23eqtr4d 2659 . . . . . . . 8  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  ( (
( A  +o  B
)  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  D
) )
253, 3nnmcli 7695 . . . . . . . . 9  |-  ( ( A  +o  B )  .o  ( A  +o  B ) )  e. 
om
26 nnacan 7708 . . . . . . . . 9  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  e.  om  /\  B  e.  om  /\  D  e. 
om )  ->  (
( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  =  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  D )  <->  B  =  D ) )
2725, 2, 7, 26mp3an 1424 . . . . . . . 8  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  D
)  <->  B  =  D
)
2824, 27sylib 208 . . . . . . 7  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  B  =  D )
2928oveq2d 6666 . . . . . 6  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  ( C  +o  B )  =  ( C  +o  D ) )
3020, 29eqtr4d 2659 . . . . 5  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  ( A  +o  B )  =  ( C  +o  B ) )
31 nnacom 7697 . . . . . 6  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( B  +o  A
)  =  ( A  +o  B ) )
322, 1, 31mp2an 708 . . . . 5  |-  ( B  +o  A )  =  ( A  +o  B
)
33 nnacom 7697 . . . . . 6  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( B  +o  C
)  =  ( C  +o  B ) )
342, 6, 33mp2an 708 . . . . 5  |-  ( B  +o  C )  =  ( C  +o  B
)
3530, 32, 343eqtr4g 2681 . . . 4  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  ( B  +o  A )  =  ( B  +o  C ) )
36 nnacan 7708 . . . . 5  |-  ( ( B  e.  om  /\  A  e.  om  /\  C  e.  om )  ->  (
( B  +o  A
)  =  ( B  +o  C )  <->  A  =  C ) )
372, 1, 6, 36mp3an 1424 . . . 4  |-  ( ( B  +o  A )  =  ( B  +o  C )  <->  A  =  C )
3835, 37sylib 208 . . 3  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  A  =  C )
3938, 28jca 554 . 2  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  ->  ( A  =  C  /\  B  =  D ) )
40 oveq12 6659 . . . 4  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A  +o  B
)  =  ( C  +o  D ) )
4140, 40oveq12d 6668 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  ( ( A  +o  B )  .o  ( A  +o  B ) )  =  ( ( C  +o  D )  .o  ( C  +o  D
) ) )
42 simpr 477 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  B  =  D )
4341, 42oveq12d 6668 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  =  ( ( ( C  +o  D
)  .o  ( C  +o  D ) )  +o  D ) )
4439, 43impbii 199 1  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  <->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   Ord word 5722  (class class class)co 6650   omcom 7065    +o coa 7557    .o comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565
This theorem is referenced by:  omopth  7738
  Copyright terms: Public domain W3C validator