MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onacda Structured version   Visualization version   GIF version

Theorem onacda 9019
Description: The cardinal and ordinal sums are always equinumerous. (Contributed by Mario Carneiro, 6-Feb-2013.) (Revised by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
onacda ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) ≈ (𝐴 +𝑐 𝐵))

Proof of Theorem onacda
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 enrefg 7987 . . . . 5 (𝐴 ∈ On → 𝐴𝐴)
21adantr 481 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴𝐴)
3 simpr 477 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
4 eqid 2622 . . . . . . . 8 (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) = (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))
54oacomf1olem 7644 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∧ (ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∩ 𝐴) = ∅))
65ancoms 469 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∧ (ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∩ 𝐴) = ∅))
76simpld 475 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))
8 f1oeng 7974 . . . . 5 ((𝐵 ∈ On ∧ (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))) → 𝐵 ≈ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))
93, 7, 8syl2anc 693 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ≈ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))
10 incom 3805 . . . . 5 (𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))) = (ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∩ 𝐴)
116simprd 479 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∩ 𝐴) = ∅)
1210, 11syl5eq 2668 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))) = ∅)
13 cdaenun 8996 . . . 4 ((𝐴𝐴𝐵 ≈ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∧ (𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))) = ∅) → (𝐴 +𝑐 𝐵) ≈ (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))))
142, 9, 12, 13syl3anc 1326 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑐 𝐵) ≈ (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))))
15 oarec 7642 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))))
1614, 15breqtrrd 4681 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑐 𝐵) ≈ (𝐴 +𝑜 𝐵))
1716ensymd 8007 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) ≈ (𝐴 +𝑐 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cun 3572  cin 3573  c0 3915   class class class wbr 4653  cmpt 4729  ran crn 5115  Oncon0 5723  1-1-ontowf1o 5887  (class class class)co 6650   +𝑜 coa 7557  cen 7952   +𝑐 ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-cda 8990
This theorem is referenced by:  cardacda  9020  nnacda  9023
  Copyright terms: Public domain W3C validator