MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onmsuc Structured version   Visualization version   Unicode version

Theorem onmsuc 7609
Description: Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
onmsuc  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  .o  suc  B )  =  ( ( A  .o  B )  +o  A ) )

Proof of Theorem onmsuc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 peano2 7086 . . . . 5  |-  ( B  e.  om  ->  suc  B  e.  om )
2 nnon 7071 . . . . 5  |-  ( suc 
B  e.  om  ->  suc 
B  e.  On )
31, 2syl 17 . . . 4  |-  ( B  e.  om  ->  suc  B  e.  On )
4 omv 7592 . . . 4  |-  ( ( A  e.  On  /\  suc  B  e.  On )  ->  ( A  .o  suc  B )  =  ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) ) `  suc  B ) )
53, 4sylan2 491 . . 3  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  .o  suc  B )  =  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  suc  B
) )
61adantl 482 . . . 4  |-  ( ( A  e.  On  /\  B  e.  om )  ->  suc  B  e.  om )
7 fvres 6207 . . . 4  |-  ( suc 
B  e.  om  ->  ( ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  suc  B
)  =  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  suc  B
) )
86, 7syl 17 . . 3  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +o  A
) ) ,  (/) )  |`  om ) `  suc  B )  =  ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) ) `  suc  B ) )
95, 8eqtr4d 2659 . 2  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  .o  suc  B )  =  ( ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  suc  B ) )
10 ovex 6678 . . . . 5  |-  ( A  .o  B )  e. 
_V
11 oveq1 6657 . . . . . 6  |-  ( x  =  ( A  .o  B )  ->  (
x  +o  A )  =  ( ( A  .o  B )  +o  A ) )
12 eqid 2622 . . . . . 6  |-  ( x  e.  _V  |->  ( x  +o  A ) )  =  ( x  e. 
_V  |->  ( x  +o  A ) )
13 ovex 6678 . . . . . 6  |-  ( ( A  .o  B )  +o  A )  e. 
_V
1411, 12, 13fvmpt 6282 . . . . 5  |-  ( ( A  .o  B )  e.  _V  ->  (
( x  e.  _V  |->  ( x  +o  A
) ) `  ( A  .o  B ) )  =  ( ( A  .o  B )  +o  A ) )
1510, 14ax-mp 5 . . . 4  |-  ( ( x  e.  _V  |->  ( x  +o  A ) ) `  ( A  .o  B ) )  =  ( ( A  .o  B )  +o  A )
16 nnon 7071 . . . . . . 7  |-  ( B  e.  om  ->  B  e.  On )
17 omv 7592 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B ) )
1816, 17sylan2 491 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  .o  B
)  =  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B ) )
19 fvres 6207 . . . . . . 7  |-  ( B  e.  om  ->  (
( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  B )  =  ( rec (
( x  e.  _V  |->  ( x  +o  A
) ) ,  (/) ) `  B )
)
2019adantl 482 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +o  A
) ) ,  (/) )  |`  om ) `  B )  =  ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) ) `  B
) )
2118, 20eqtr4d 2659 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  .o  B
)  =  ( ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  B ) )
2221fveq2d 6195 . . . 4  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( ( x  e. 
_V  |->  ( x  +o  A ) ) `  ( A  .o  B
) )  =  ( ( x  e.  _V  |->  ( x  +o  A
) ) `  (
( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  B ) ) )
2315, 22syl5eqr 2670 . . 3  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( ( A  .o  B )  +o  A
)  =  ( ( x  e.  _V  |->  ( x  +o  A ) ) `  ( ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  B ) ) )
24 frsuc 7532 . . . 4  |-  ( B  e.  om  ->  (
( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  suc  B
)  =  ( ( x  e.  _V  |->  ( x  +o  A ) ) `  ( ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  B ) ) )
2524adantl 482 . . 3  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +o  A
) ) ,  (/) )  |`  om ) `  suc  B )  =  ( ( x  e.  _V  |->  ( x  +o  A
) ) `  (
( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  B ) ) )
2623, 25eqtr4d 2659 . 2  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( ( A  .o  B )  +o  A
)  =  ( ( rec ( ( x  e.  _V  |->  ( x  +o  A ) ) ,  (/) )  |`  om ) `  suc  B ) )
279, 26eqtr4d 2659 1  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  .o  suc  B )  =  ( ( A  .o  B )  +o  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915    |-> cmpt 4729    |` cres 5116   Oncon0 5723   suc csuc 5725   ` cfv 5888  (class class class)co 6650   omcom 7065   reccrdg 7505    +o coa 7557    .o comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-omul 7565
This theorem is referenced by:  om1  7622  nnmsuc  7687
  Copyright terms: Public domain W3C validator