| Step | Hyp | Ref
| Expression |
| 1 | | simprr 796 |
. . . 4
⊢ ((𝜑 ∧ (𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀)) → 𝑁 ∈ 𝑀) |
| 2 | | ssrab2 3687 |
. . . . . . . 8
⊢ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣} ⊆ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} |
| 3 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 ∈ dom 𝑂) → 𝑀 ∈ dom 𝑂) |
| 4 | | ordtypelem.1 |
. . . . . . . . . . . . 13
⊢ 𝐹 = recs(𝐺) |
| 5 | | ordtypelem.2 |
. . . . . . . . . . . . 13
⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
| 6 | | ordtypelem.3 |
. . . . . . . . . . . . 13
⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
| 7 | | ordtypelem.5 |
. . . . . . . . . . . . 13
⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
| 8 | | ordtypelem.6 |
. . . . . . . . . . . . 13
⊢ 𝑂 = OrdIso(𝑅, 𝐴) |
| 9 | | ordtypelem.7 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 We 𝐴) |
| 10 | | ordtypelem.8 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 Se 𝐴) |
| 11 | 4, 5, 6, 7, 8, 9, 10 | ordtypelem4 8426 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) |
| 12 | | fdm 6051 |
. . . . . . . . . . . 12
⊢ (𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴 → dom 𝑂 = (𝑇 ∩ dom 𝐹)) |
| 13 | 11, 12 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝑂 = (𝑇 ∩ dom 𝐹)) |
| 14 | 13 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 ∈ dom 𝑂) → dom 𝑂 = (𝑇 ∩ dom 𝐹)) |
| 15 | 3, 14 | eleqtrd 2703 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ dom 𝑂) → 𝑀 ∈ (𝑇 ∩ dom 𝐹)) |
| 16 | 4, 5, 6, 7, 8, 9, 10 | ordtypelem3 8425 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹‘𝑀) ∈ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣}) |
| 17 | 15, 16 | syldan 487 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ dom 𝑂) → (𝐹‘𝑀) ∈ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣}) |
| 18 | 2, 17 | sseldi 3601 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ dom 𝑂) → (𝐹‘𝑀) ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤}) |
| 19 | | breq2 4657 |
. . . . . . . . . 10
⊢ (𝑤 = (𝐹‘𝑀) → (𝑗𝑅𝑤 ↔ 𝑗𝑅(𝐹‘𝑀))) |
| 20 | 19 | ralbidv 2986 |
. . . . . . . . 9
⊢ (𝑤 = (𝐹‘𝑀) → (∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤 ↔ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅(𝐹‘𝑀))) |
| 21 | 20 | elrab 3363 |
. . . . . . . 8
⊢ ((𝐹‘𝑀) ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ↔ ((𝐹‘𝑀) ∈ 𝐴 ∧ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅(𝐹‘𝑀))) |
| 22 | 21 | simprbi 480 |
. . . . . . 7
⊢ ((𝐹‘𝑀) ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} → ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅(𝐹‘𝑀)) |
| 23 | 18, 22 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ dom 𝑂) → ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅(𝐹‘𝑀)) |
| 24 | 4 | tfr1a 7490 |
. . . . . . . . 9
⊢ (Fun
𝐹 ∧ Lim dom 𝐹) |
| 25 | 24 | simpli 474 |
. . . . . . . 8
⊢ Fun 𝐹 |
| 26 | | funfn 5918 |
. . . . . . . 8
⊢ (Fun
𝐹 ↔ 𝐹 Fn dom 𝐹) |
| 27 | 25, 26 | mpbi 220 |
. . . . . . 7
⊢ 𝐹 Fn dom 𝐹 |
| 28 | 24 | simpri 478 |
. . . . . . . . 9
⊢ Lim dom
𝐹 |
| 29 | | limord 5784 |
. . . . . . . . 9
⊢ (Lim dom
𝐹 → Ord dom 𝐹) |
| 30 | 28, 29 | ax-mp 5 |
. . . . . . . 8
⊢ Ord dom
𝐹 |
| 31 | | inss2 3834 |
. . . . . . . . . 10
⊢ (𝑇 ∩ dom 𝐹) ⊆ dom 𝐹 |
| 32 | 13, 31 | syl6eqss 3655 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑂 ⊆ dom 𝐹) |
| 33 | 32 | sselda 3603 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ dom 𝑂) → 𝑀 ∈ dom 𝐹) |
| 34 | | ordelss 5739 |
. . . . . . . 8
⊢ ((Ord dom
𝐹 ∧ 𝑀 ∈ dom 𝐹) → 𝑀 ⊆ dom 𝐹) |
| 35 | 30, 33, 34 | sylancr 695 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ dom 𝑂) → 𝑀 ⊆ dom 𝐹) |
| 36 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑗 = (𝐹‘𝑎) → (𝑗𝑅(𝐹‘𝑀) ↔ (𝐹‘𝑎)𝑅(𝐹‘𝑀))) |
| 37 | 36 | ralima 6498 |
. . . . . . 7
⊢ ((𝐹 Fn dom 𝐹 ∧ 𝑀 ⊆ dom 𝐹) → (∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅(𝐹‘𝑀) ↔ ∀𝑎 ∈ 𝑀 (𝐹‘𝑎)𝑅(𝐹‘𝑀))) |
| 38 | 27, 35, 37 | sylancr 695 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ dom 𝑂) → (∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅(𝐹‘𝑀) ↔ ∀𝑎 ∈ 𝑀 (𝐹‘𝑎)𝑅(𝐹‘𝑀))) |
| 39 | 23, 38 | mpbid 222 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ dom 𝑂) → ∀𝑎 ∈ 𝑀 (𝐹‘𝑎)𝑅(𝐹‘𝑀)) |
| 40 | 39 | adantrr 753 |
. . . 4
⊢ ((𝜑 ∧ (𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀)) → ∀𝑎 ∈ 𝑀 (𝐹‘𝑎)𝑅(𝐹‘𝑀)) |
| 41 | | fveq2 6191 |
. . . . . 6
⊢ (𝑎 = 𝑁 → (𝐹‘𝑎) = (𝐹‘𝑁)) |
| 42 | 41 | breq1d 4663 |
. . . . 5
⊢ (𝑎 = 𝑁 → ((𝐹‘𝑎)𝑅(𝐹‘𝑀) ↔ (𝐹‘𝑁)𝑅(𝐹‘𝑀))) |
| 43 | 42 | rspcv 3305 |
. . . 4
⊢ (𝑁 ∈ 𝑀 → (∀𝑎 ∈ 𝑀 (𝐹‘𝑎)𝑅(𝐹‘𝑀) → (𝐹‘𝑁)𝑅(𝐹‘𝑀))) |
| 44 | 1, 40, 43 | sylc 65 |
. . 3
⊢ ((𝜑 ∧ (𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀)) → (𝐹‘𝑁)𝑅(𝐹‘𝑀)) |
| 45 | 4, 5, 6, 7, 8, 9, 10 | ordtypelem1 8423 |
. . . . . 6
⊢ (𝜑 → 𝑂 = (𝐹 ↾ 𝑇)) |
| 46 | 45 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀)) → 𝑂 = (𝐹 ↾ 𝑇)) |
| 47 | 46 | fveq1d 6193 |
. . . 4
⊢ ((𝜑 ∧ (𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀)) → (𝑂‘𝑁) = ((𝐹 ↾ 𝑇)‘𝑁)) |
| 48 | 4, 5, 6, 7, 8, 9, 10 | ordtypelem2 8424 |
. . . . . . . 8
⊢ (𝜑 → Ord 𝑇) |
| 49 | 48 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀)) → Ord 𝑇) |
| 50 | | inss1 3833 |
. . . . . . . . . 10
⊢ (𝑇 ∩ dom 𝐹) ⊆ 𝑇 |
| 51 | 13, 50 | syl6eqss 3655 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑂 ⊆ 𝑇) |
| 52 | 51 | sselda 3603 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ dom 𝑂) → 𝑀 ∈ 𝑇) |
| 53 | 52 | adantrr 753 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀)) → 𝑀 ∈ 𝑇) |
| 54 | | ordelss 5739 |
. . . . . . 7
⊢ ((Ord
𝑇 ∧ 𝑀 ∈ 𝑇) → 𝑀 ⊆ 𝑇) |
| 55 | 49, 53, 54 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀)) → 𝑀 ⊆ 𝑇) |
| 56 | 55, 1 | sseldd 3604 |
. . . . 5
⊢ ((𝜑 ∧ (𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀)) → 𝑁 ∈ 𝑇) |
| 57 | | fvres 6207 |
. . . . 5
⊢ (𝑁 ∈ 𝑇 → ((𝐹 ↾ 𝑇)‘𝑁) = (𝐹‘𝑁)) |
| 58 | 56, 57 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ (𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀)) → ((𝐹 ↾ 𝑇)‘𝑁) = (𝐹‘𝑁)) |
| 59 | 47, 58 | eqtrd 2656 |
. . 3
⊢ ((𝜑 ∧ (𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀)) → (𝑂‘𝑁) = (𝐹‘𝑁)) |
| 60 | 46 | fveq1d 6193 |
. . . 4
⊢ ((𝜑 ∧ (𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀)) → (𝑂‘𝑀) = ((𝐹 ↾ 𝑇)‘𝑀)) |
| 61 | | fvres 6207 |
. . . . 5
⊢ (𝑀 ∈ 𝑇 → ((𝐹 ↾ 𝑇)‘𝑀) = (𝐹‘𝑀)) |
| 62 | 53, 61 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ (𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀)) → ((𝐹 ↾ 𝑇)‘𝑀) = (𝐹‘𝑀)) |
| 63 | 60, 62 | eqtrd 2656 |
. . 3
⊢ ((𝜑 ∧ (𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀)) → (𝑂‘𝑀) = (𝐹‘𝑀)) |
| 64 | 44, 59, 63 | 3brtr4d 4685 |
. 2
⊢ ((𝜑 ∧ (𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀)) → (𝑂‘𝑁)𝑅(𝑂‘𝑀)) |
| 65 | 64 | expr 643 |
1
⊢ ((𝜑 ∧ 𝑀 ∈ dom 𝑂) → (𝑁 ∈ 𝑀 → (𝑂‘𝑁)𝑅(𝑂‘𝑀))) |