Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem9N Structured version   Visualization version   GIF version

Theorem osumcllem9N 35250
Description: Lemma for osumclN 35253. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem9N (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀 = 𝑋)

Proof of Theorem osumcllem9N
StepHypRef Expression
1 inass 3823 . . . . . . 7 ((( 𝑋) ∩ 𝑈) ∩ 𝑀) = (( 𝑋) ∩ (𝑈𝑀))
2 simp11 1091 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝐾 ∈ HL)
3 simp13 1093 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌𝐶)
4 simp21 1094 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ ( 𝑌))
5 osumcllem.l . . . . . . . . . 10 = (le‘𝐾)
6 osumcllem.j . . . . . . . . . 10 = (join‘𝐾)
7 osumcllem.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
8 osumcllem.p . . . . . . . . . 10 + = (+𝑃𝐾)
9 osumcllem.o . . . . . . . . . 10 = (⊥𝑃𝐾)
10 osumcllem.c . . . . . . . . . 10 𝐶 = (PSubCl‘𝐾)
11 osumcllem.m . . . . . . . . . 10 𝑀 = (𝑋 + {𝑝})
12 osumcllem.u . . . . . . . . . 10 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
135, 6, 7, 8, 9, 10, 11, 12osumcllem3N 35244 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (( 𝑋) ∩ 𝑈) = 𝑌)
142, 3, 4, 13syl3anc 1326 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( 𝑋) ∩ 𝑈) = 𝑌)
1514ineq1d 3813 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ((( 𝑋) ∩ 𝑈) ∩ 𝑀) = (𝑌𝑀))
161, 15syl5eqr 2670 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( 𝑋) ∩ (𝑈𝑀)) = (𝑌𝑀))
17 simp12 1092 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋𝐶)
187, 10psubclssatN 35227 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋𝐴)
192, 17, 18syl2anc 693 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋𝐴)
207, 10psubclssatN 35227 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌𝐴)
212, 3, 20syl2anc 693 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑌𝐴)
22 simp22 1095 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ≠ ∅)
237, 8paddssat 35100 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)
242, 19, 21, 23syl3anc 1326 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + 𝑌) ⊆ 𝐴)
257, 9polssatN 35194 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ⊆ 𝐴) → ( ‘(𝑋 + 𝑌)) ⊆ 𝐴)
262, 24, 25syl2anc 693 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘(𝑋 + 𝑌)) ⊆ 𝐴)
277, 9polssatN 35194 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ( ‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ 𝐴)
282, 26, 27syl2anc 693 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) ⊆ 𝐴)
2912, 28syl5eqss 3649 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑈𝐴)
30 simp23 1096 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝𝑈)
3129, 30sseldd 3604 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑝𝐴)
32 simp3 1063 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ¬ 𝑝 ∈ (𝑋 + 𝑌))
335, 6, 7, 8, 9, 10, 11, 12osumcllem8N 35249 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌𝑀) = ∅)
342, 19, 21, 4, 22, 31, 32, 33syl331anc 1351 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑌𝑀) = ∅)
3516, 34eqtrd 2656 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( 𝑋) ∩ (𝑈𝑀)) = ∅)
3635fveq2d 6195 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘(( 𝑋) ∩ (𝑈𝑀))) = ( ‘∅))
377, 9pol0N 35195 . . . . 5 (𝐾 ∈ HL → ( ‘∅) = 𝐴)
382, 37syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘∅) = 𝐴)
3936, 38eqtrd 2656 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘(( 𝑋) ∩ (𝑈𝑀))) = 𝐴)
405, 6, 7, 8, 9, 10, 11, 12osumcllem1N 35242 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑈𝑀) = 𝑀)
412, 19, 21, 30, 40syl31anc 1329 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑈𝑀) = 𝑀)
4239, 41ineq12d 3815 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( ‘(( 𝑋) ∩ (𝑈𝑀))) ∩ (𝑈𝑀)) = (𝐴𝑀))
437, 9, 10polsubclN 35238 . . . . . 6 ((𝐾 ∈ HL ∧ ( ‘(𝑋 + 𝑌)) ⊆ 𝐴) → ( ‘( ‘(𝑋 + 𝑌))) ∈ 𝐶)
442, 26, 43syl2anc 693 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) ∈ 𝐶)
4512, 44syl5eqel 2705 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑈𝐶)
467, 8, 10paddatclN 35235 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑝𝐴) → (𝑋 + {𝑝}) ∈ 𝐶)
472, 17, 31, 46syl3anc 1326 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ∈ 𝐶)
4811, 47syl5eqel 2705 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀𝐶)
4910psubclinN 35234 . . . 4 ((𝐾 ∈ HL ∧ 𝑈𝐶𝑀𝐶) → (𝑈𝑀) ∈ 𝐶)
502, 45, 48, 49syl3anc 1326 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑈𝑀) ∈ 𝐶)
515, 6, 7, 8, 9, 10, 11, 12osumcllem2N 35243 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑋 ⊆ (𝑈𝑀))
522, 19, 21, 30, 51syl31anc 1329 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑋 ⊆ (𝑈𝑀))
5310, 9poml6N 35241 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶 ∧ (𝑈𝑀) ∈ 𝐶) ∧ 𝑋 ⊆ (𝑈𝑀)) → (( ‘(( 𝑋) ∩ (𝑈𝑀))) ∩ (𝑈𝑀)) = 𝑋)
542, 17, 50, 52, 53syl31anc 1329 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (( ‘(( 𝑋) ∩ (𝑈𝑀))) ∩ (𝑈𝑀)) = 𝑋)
5531snssd 4340 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → {𝑝} ⊆ 𝐴)
567, 8paddssat 35100 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ {𝑝} ⊆ 𝐴) → (𝑋 + {𝑝}) ⊆ 𝐴)
572, 19, 55, 56syl3anc 1326 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝑋 + {𝑝}) ⊆ 𝐴)
5811, 57syl5eqss 3649 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀𝐴)
59 sseqin2 3817 . . 3 (𝑀𝐴 ↔ (𝐴𝑀) = 𝑀)
6058, 59sylib 208 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → (𝐴𝑀) = 𝑀)
6142, 54, 603eqtr3rd 2665 1 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝑈) ∧ ¬ 𝑝 ∈ (𝑋 + 𝑌)) → 𝑀 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cin 3573  wss 3574  c0 3915  {csn 4177  cfv 5888  (class class class)co 6650  lecple 15948  joincjn 16944  Atomscatm 34550  HLchlt 34637  +𝑃cpadd 35081  𝑃cpolN 35188  PSubClcpscN 35220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-polarityN 35189  df-psubclN 35221
This theorem is referenced by:  osumcllem11N  35252
  Copyright terms: Public domain W3C validator