| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > osumcllem9N | Structured version Visualization version Unicode version | ||
| Description: Lemma for osumclN 35253. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| osumcllem.l |
|
| osumcllem.j |
|
| osumcllem.a |
|
| osumcllem.p |
|
| osumcllem.o |
|
| osumcllem.c |
|
| osumcllem.m |
|
| osumcllem.u |
|
| Ref | Expression |
|---|---|
| osumcllem9N |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inass 3823 |
. . . . . . 7
| |
| 2 | simp11 1091 |
. . . . . . . . 9
| |
| 3 | simp13 1093 |
. . . . . . . . 9
| |
| 4 | simp21 1094 |
. . . . . . . . 9
| |
| 5 | osumcllem.l |
. . . . . . . . . 10
| |
| 6 | osumcllem.j |
. . . . . . . . . 10
| |
| 7 | osumcllem.a |
. . . . . . . . . 10
| |
| 8 | osumcllem.p |
. . . . . . . . . 10
| |
| 9 | osumcllem.o |
. . . . . . . . . 10
| |
| 10 | osumcllem.c |
. . . . . . . . . 10
| |
| 11 | osumcllem.m |
. . . . . . . . . 10
| |
| 12 | osumcllem.u |
. . . . . . . . . 10
| |
| 13 | 5, 6, 7, 8, 9, 10, 11, 12 | osumcllem3N 35244 |
. . . . . . . . 9
|
| 14 | 2, 3, 4, 13 | syl3anc 1326 |
. . . . . . . 8
|
| 15 | 14 | ineq1d 3813 |
. . . . . . 7
|
| 16 | 1, 15 | syl5eqr 2670 |
. . . . . 6
|
| 17 | simp12 1092 |
. . . . . . . 8
| |
| 18 | 7, 10 | psubclssatN 35227 |
. . . . . . . 8
|
| 19 | 2, 17, 18 | syl2anc 693 |
. . . . . . 7
|
| 20 | 7, 10 | psubclssatN 35227 |
. . . . . . . 8
|
| 21 | 2, 3, 20 | syl2anc 693 |
. . . . . . 7
|
| 22 | simp22 1095 |
. . . . . . 7
| |
| 23 | 7, 8 | paddssat 35100 |
. . . . . . . . . . . 12
|
| 24 | 2, 19, 21, 23 | syl3anc 1326 |
. . . . . . . . . . 11
|
| 25 | 7, 9 | polssatN 35194 |
. . . . . . . . . . 11
|
| 26 | 2, 24, 25 | syl2anc 693 |
. . . . . . . . . 10
|
| 27 | 7, 9 | polssatN 35194 |
. . . . . . . . . 10
|
| 28 | 2, 26, 27 | syl2anc 693 |
. . . . . . . . 9
|
| 29 | 12, 28 | syl5eqss 3649 |
. . . . . . . 8
|
| 30 | simp23 1096 |
. . . . . . . 8
| |
| 31 | 29, 30 | sseldd 3604 |
. . . . . . 7
|
| 32 | simp3 1063 |
. . . . . . 7
| |
| 33 | 5, 6, 7, 8, 9, 10, 11, 12 | osumcllem8N 35249 |
. . . . . . 7
|
| 34 | 2, 19, 21, 4, 22, 31, 32, 33 | syl331anc 1351 |
. . . . . 6
|
| 35 | 16, 34 | eqtrd 2656 |
. . . . 5
|
| 36 | 35 | fveq2d 6195 |
. . . 4
|
| 37 | 7, 9 | pol0N 35195 |
. . . . 5
|
| 38 | 2, 37 | syl 17 |
. . . 4
|
| 39 | 36, 38 | eqtrd 2656 |
. . 3
|
| 40 | 5, 6, 7, 8, 9, 10, 11, 12 | osumcllem1N 35242 |
. . . 4
|
| 41 | 2, 19, 21, 30, 40 | syl31anc 1329 |
. . 3
|
| 42 | 39, 41 | ineq12d 3815 |
. 2
|
| 43 | 7, 9, 10 | polsubclN 35238 |
. . . . . 6
|
| 44 | 2, 26, 43 | syl2anc 693 |
. . . . 5
|
| 45 | 12, 44 | syl5eqel 2705 |
. . . 4
|
| 46 | 7, 8, 10 | paddatclN 35235 |
. . . . . 6
|
| 47 | 2, 17, 31, 46 | syl3anc 1326 |
. . . . 5
|
| 48 | 11, 47 | syl5eqel 2705 |
. . . 4
|
| 49 | 10 | psubclinN 35234 |
. . . 4
|
| 50 | 2, 45, 48, 49 | syl3anc 1326 |
. . 3
|
| 51 | 5, 6, 7, 8, 9, 10, 11, 12 | osumcllem2N 35243 |
. . . 4
|
| 52 | 2, 19, 21, 30, 51 | syl31anc 1329 |
. . 3
|
| 53 | 10, 9 | poml6N 35241 |
. . 3
|
| 54 | 2, 17, 50, 52, 53 | syl31anc 1329 |
. 2
|
| 55 | 31 | snssd 4340 |
. . . . 5
|
| 56 | 7, 8 | paddssat 35100 |
. . . . 5
|
| 57 | 2, 19, 55, 56 | syl3anc 1326 |
. . . 4
|
| 58 | 11, 57 | syl5eqss 3649 |
. . 3
|
| 59 | sseqin2 3817 |
. . 3
| |
| 60 | 58, 59 | sylib 208 |
. 2
|
| 61 | 42, 54, 60 | 3eqtr3rd 2665 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-undef 7399 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-polarityN 35189 df-psubclN 35221 |
| This theorem is referenced by: osumcllem11N 35252 |
| Copyright terms: Public domain | W3C validator |