Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddcom Structured version   Visualization version   GIF version

Theorem paddcom 35099
Description: Projective subspace sum commutes. (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddcom ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem paddcom
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uncom 3757 . . . 4 (𝑋𝑌) = (𝑌𝑋)
21a1i 11 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑋𝑌) = (𝑌𝑋))
3 simpl1 1064 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝐾 ∈ Lat)
4 simpl2 1065 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑋𝐴)
5 simprl 794 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑞𝑋)
64, 5sseldd 3604 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑞𝐴)
7 eqid 2622 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
8 padd0.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
97, 8atbase 34576 . . . . . . . . 9 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
106, 9syl 17 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑞 ∈ (Base‘𝐾))
11 simpl3 1066 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑌𝐴)
12 simprr 796 . . . . . . . . . 10 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑟𝑌)
1311, 12sseldd 3604 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑟𝐴)
147, 8atbase 34576 . . . . . . . . 9 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
1513, 14syl 17 . . . . . . . 8 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → 𝑟 ∈ (Base‘𝐾))
16 eqid 2622 . . . . . . . . 9 (join‘𝐾) = (join‘𝐾)
177, 16latjcom 17059 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → (𝑞(join‘𝐾)𝑟) = (𝑟(join‘𝐾)𝑞))
183, 10, 15, 17syl3anc 1326 . . . . . . 7 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → (𝑞(join‘𝐾)𝑟) = (𝑟(join‘𝐾)𝑞))
1918breq2d 4665 . . . . . 6 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑞𝑋𝑟𝑌)) → (𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)))
20192rexbidva 3056 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)))
21 rexcom 3099 . . . . 5 (∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞) ↔ ∃𝑟𝑌𝑞𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞))
2220, 21syl6bb 276 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑟𝑌𝑞𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)))
2322rabbidv 3189 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)} = {𝑝𝐴 ∣ ∃𝑟𝑌𝑞𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)})
242, 23uneq12d 3768 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}) = ((𝑌𝑋) ∪ {𝑝𝐴 ∣ ∃𝑟𝑌𝑞𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)}))
25 eqid 2622 . . 3 (le‘𝐾) = (le‘𝐾)
26 padd0.p . . 3 + = (+𝑃𝐾)
2725, 16, 8, 26paddval 35084 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}))
2825, 16, 8, 26paddval 35084 . . 3 ((𝐾 ∈ Lat ∧ 𝑌𝐴𝑋𝐴) → (𝑌 + 𝑋) = ((𝑌𝑋) ∪ {𝑝𝐴 ∣ ∃𝑟𝑌𝑞𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)}))
29283com23 1271 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑌 + 𝑋) = ((𝑌𝑋) ∪ {𝑝𝐴 ∣ ∃𝑟𝑌𝑞𝑋 𝑝(le‘𝐾)(𝑟(join‘𝐾)𝑞)}))
3024, 27, 293eqtr4d 2666 1 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  cun 3572  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  joincjn 16944  Latclat 17045  Atomscatm 34550  +𝑃cpadd 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-lub 16974  df-join 16976  df-lat 17046  df-ats 34554  df-padd 35082
This theorem is referenced by:  paddass  35124  padd12N  35125  pmod2iN  35135  pmodN  35136  pmapjat2  35140
  Copyright terms: Public domain W3C validator