Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddcom Structured version   Visualization version   Unicode version

Theorem paddcom 35099
Description: Projective subspace sum commutes. (Contributed by NM, 3-Jan-2012.)
Hypotheses
Ref Expression
padd0.a  |-  A  =  ( Atoms `  K )
padd0.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
paddcom  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )

Proof of Theorem paddcom
Dummy variables  q  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uncom 3757 . . . 4  |-  ( X  u.  Y )  =  ( Y  u.  X
)
21a1i 11 . . 3  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  u.  Y )  =  ( Y  u.  X ) )
3 simpl1 1064 . . . . . . . 8  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  K  e.  Lat )
4 simpl2 1065 . . . . . . . . . 10  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  X  C_  A )
5 simprl 794 . . . . . . . . . 10  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  q  e.  X )
64, 5sseldd 3604 . . . . . . . . 9  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  q  e.  A )
7 eqid 2622 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
8 padd0.a . . . . . . . . . 10  |-  A  =  ( Atoms `  K )
97, 8atbase 34576 . . . . . . . . 9  |-  ( q  e.  A  ->  q  e.  ( Base `  K
) )
106, 9syl 17 . . . . . . . 8  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  q  e.  ( Base `  K
) )
11 simpl3 1066 . . . . . . . . . 10  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  Y  C_  A )
12 simprr 796 . . . . . . . . . 10  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  r  e.  Y )
1311, 12sseldd 3604 . . . . . . . . 9  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  r  e.  A )
147, 8atbase 34576 . . . . . . . . 9  |-  ( r  e.  A  ->  r  e.  ( Base `  K
) )
1513, 14syl 17 . . . . . . . 8  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  r  e.  ( Base `  K
) )
16 eqid 2622 . . . . . . . . 9  |-  ( join `  K )  =  (
join `  K )
177, 16latjcom 17059 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  q  e.  ( Base `  K )  /\  r  e.  ( Base `  K
) )  ->  (
q ( join `  K
) r )  =  ( r ( join `  K ) q ) )
183, 10, 15, 17syl3anc 1326 . . . . . . 7  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  (
q ( join `  K
) r )  =  ( r ( join `  K ) q ) )
1918breq2d 4665 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( q  e.  X  /\  r  e.  Y
) )  ->  (
p ( le `  K ) ( q ( join `  K
) r )  <->  p ( le `  K ) ( r ( join `  K
) q ) ) )
20192rexbidva 3056 . . . . 5  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( E. q  e.  X  E. r  e.  Y  p ( le `  K ) ( q ( join `  K
) r )  <->  E. q  e.  X  E. r  e.  Y  p ( le `  K ) ( r ( join `  K
) q ) ) )
21 rexcom 3099 . . . . 5  |-  ( E. q  e.  X  E. r  e.  Y  p
( le `  K
) ( r (
join `  K )
q )  <->  E. r  e.  Y  E. q  e.  X  p ( le `  K ) ( r ( join `  K
) q ) )
2220, 21syl6bb 276 . . . 4  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( E. q  e.  X  E. r  e.  Y  p ( le `  K ) ( q ( join `  K
) r )  <->  E. r  e.  Y  E. q  e.  X  p ( le `  K ) ( r ( join `  K
) q ) ) )
2322rabbidv 3189 . . 3  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p
( le `  K
) ( q (
join `  K )
r ) }  =  { p  e.  A  |  E. r  e.  Y  E. q  e.  X  p ( le `  K ) ( r ( join `  K
) q ) } )
242, 23uneq12d 3768 . 2  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  (
( X  u.  Y
)  u.  { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p
( le `  K
) ( q (
join `  K )
r ) } )  =  ( ( Y  u.  X )  u. 
{ p  e.  A  |  E. r  e.  Y  E. q  e.  X  p ( le `  K ) ( r ( join `  K
) q ) } ) )
25 eqid 2622 . . 3  |-  ( le
`  K )  =  ( le `  K
)
26 padd0.p . . 3  |-  .+  =  ( +P `  K
)
2725, 16, 8, 26paddval 35084 . 2  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( ( X  u.  Y )  u.  {
p  e.  A  |  E. q  e.  X  E. r  e.  Y  p ( le `  K ) ( q ( join `  K
) r ) } ) )
2825, 16, 8, 26paddval 35084 . . 3  |-  ( ( K  e.  Lat  /\  Y  C_  A  /\  X  C_  A )  ->  ( Y  .+  X )  =  ( ( Y  u.  X )  u.  {
p  e.  A  |  E. r  e.  Y  E. q  e.  X  p ( le `  K ) ( r ( join `  K
) q ) } ) )
29283com23 1271 . 2  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( Y  .+  X )  =  ( ( Y  u.  X )  u.  {
p  e.  A  |  E. r  e.  Y  E. q  e.  X  p ( le `  K ) ( r ( join `  K
) q ) } ) )
3024, 27, 293eqtr4d 2666 1  |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916    u. cun 3572    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   Latclat 17045   Atomscatm 34550   +Pcpadd 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-lub 16974  df-join 16976  df-lat 17046  df-ats 34554  df-padd 35082
This theorem is referenced by:  paddass  35124  padd12N  35125  pmod2iN  35135  pmodN  35136  pmapjat2  35140
  Copyright terms: Public domain W3C validator