MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfrcl Structured version   Visualization version   GIF version

Theorem mpfrcl 19518
Description: Reverse closure for the set of polynomial functions. (Contributed by Stefan O'Rear, 19-Mar-2015.)
Hypothesis
Ref Expression
mpfrcl.q 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
Assertion
Ref Expression
mpfrcl (𝑋𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)))

Proof of Theorem mpfrcl
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑖 𝑟 𝑠 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ne0i 3921 . . 3 (𝑋 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅) → ran ((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅)
2 mpfrcl.q . . 3 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅)
31, 2eleq2s 2719 . 2 (𝑋𝑄 → ran ((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅)
4 rneq 5351 . . . 4 (((𝐼 evalSub 𝑆)‘𝑅) = ∅ → ran ((𝐼 evalSub 𝑆)‘𝑅) = ran ∅)
5 rn0 5377 . . . 4 ran ∅ = ∅
64, 5syl6eq 2672 . . 3 (((𝐼 evalSub 𝑆)‘𝑅) = ∅ → ran ((𝐼 evalSub 𝑆)‘𝑅) = ∅)
76necon3i 2826 . 2 (ran ((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → ((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅)
8 fveq1 6190 . . . . . . 7 ((𝐼 evalSub 𝑆) = ∅ → ((𝐼 evalSub 𝑆)‘𝑅) = (∅‘𝑅))
9 0fv 6227 . . . . . . 7 (∅‘𝑅) = ∅
108, 9syl6eq 2672 . . . . . 6 ((𝐼 evalSub 𝑆) = ∅ → ((𝐼 evalSub 𝑆)‘𝑅) = ∅)
1110necon3i 2826 . . . . 5 (((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → (𝐼 evalSub 𝑆) ≠ ∅)
12 reldmevls 19517 . . . . . . . 8 Rel dom evalSub
1312ovprc1 6684 . . . . . . 7 𝐼 ∈ V → (𝐼 evalSub 𝑆) = ∅)
1413necon1ai 2821 . . . . . 6 ((𝐼 evalSub 𝑆) ≠ ∅ → 𝐼 ∈ V)
15 n0 3931 . . . . . . 7 ((𝐼 evalSub 𝑆) ≠ ∅ ↔ ∃𝑎 𝑎 ∈ (𝐼 evalSub 𝑆))
16 df-evls 19506 . . . . . . . . . 10 evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ (Base‘𝑠) / 𝑏(𝑟 ∈ (SubRing‘𝑠) ↦ (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥)))))))
1716elmpt2cl2 6878 . . . . . . . . 9 (𝑎 ∈ (𝐼 evalSub 𝑆) → 𝑆 ∈ CRing)
1817a1d 25 . . . . . . . 8 (𝑎 ∈ (𝐼 evalSub 𝑆) → (𝐼 ∈ V → 𝑆 ∈ CRing))
1918exlimiv 1858 . . . . . . 7 (∃𝑎 𝑎 ∈ (𝐼 evalSub 𝑆) → (𝐼 ∈ V → 𝑆 ∈ CRing))
2015, 19sylbi 207 . . . . . 6 ((𝐼 evalSub 𝑆) ≠ ∅ → (𝐼 ∈ V → 𝑆 ∈ CRing))
2114, 20jcai 559 . . . . 5 ((𝐼 evalSub 𝑆) ≠ ∅ → (𝐼 ∈ V ∧ 𝑆 ∈ CRing))
2211, 21syl 17 . . . 4 (((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → (𝐼 ∈ V ∧ 𝑆 ∈ CRing))
23 fvex 6201 . . . . . . . . . . . . 13 (Base‘𝑠) ∈ V
24 nfcv 2764 . . . . . . . . . . . . . 14 𝑏(SubRing‘𝑠)
25 nfcsb1v 3549 . . . . . . . . . . . . . 14 𝑏(Base‘𝑠) / 𝑏(𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥)))))
2624, 25nfmpt 4746 . . . . . . . . . . . . 13 𝑏(𝑟 ∈ (SubRing‘𝑠) ↦ (Base‘𝑠) / 𝑏(𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥))))))
27 csbeq1a 3542 . . . . . . . . . . . . . 14 (𝑏 = (Base‘𝑠) → (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥))))) = (Base‘𝑠) / 𝑏(𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥))))))
2827mpteq2dv 4745 . . . . . . . . . . . . 13 (𝑏 = (Base‘𝑠) → (𝑟 ∈ (SubRing‘𝑠) ↦ (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥)))))) = (𝑟 ∈ (SubRing‘𝑠) ↦ (Base‘𝑠) / 𝑏(𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥)))))))
2923, 26, 28csbief 3558 . . . . . . . . . . . 12 (Base‘𝑠) / 𝑏(𝑟 ∈ (SubRing‘𝑠) ↦ (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥)))))) = (𝑟 ∈ (SubRing‘𝑠) ↦ (Base‘𝑠) / 𝑏(𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥))))))
30 fveq2 6191 . . . . . . . . . . . . . 14 (𝑠 = 𝑆 → (SubRing‘𝑠) = (SubRing‘𝑆))
3130adantl 482 . . . . . . . . . . . . 13 ((𝑖 = 𝐼𝑠 = 𝑆) → (SubRing‘𝑠) = (SubRing‘𝑆))
32 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
3332adantl 482 . . . . . . . . . . . . . . 15 ((𝑖 = 𝐼𝑠 = 𝑆) → (Base‘𝑠) = (Base‘𝑆))
3433csbeq1d 3540 . . . . . . . . . . . . . 14 ((𝑖 = 𝐼𝑠 = 𝑆) → (Base‘𝑠) / 𝑏(𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥))))) = (Base‘𝑆) / 𝑏(𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥))))))
35 id 22 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝐼𝑖 = 𝐼)
36 oveq1 6657 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑆 → (𝑠s 𝑟) = (𝑆s 𝑟))
3735, 36oveqan12d 6669 . . . . . . . . . . . . . . . . 17 ((𝑖 = 𝐼𝑠 = 𝑆) → (𝑖 mPoly (𝑠s 𝑟)) = (𝐼 mPoly (𝑆s 𝑟)))
3837csbeq1d 3540 . . . . . . . . . . . . . . . 16 ((𝑖 = 𝐼𝑠 = 𝑆) → (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥))))) = (𝐼 mPoly (𝑆s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥))))))
39 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑆𝑠 = 𝑆)
40 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐼 → (𝑏𝑚 𝑖) = (𝑏𝑚 𝐼))
4139, 40oveqan12rd 6670 . . . . . . . . . . . . . . . . . . 19 ((𝑖 = 𝐼𝑠 = 𝑆) → (𝑠s (𝑏𝑚 𝑖)) = (𝑆s (𝑏𝑚 𝐼)))
4241oveq2d 6666 . . . . . . . . . . . . . . . . . 18 ((𝑖 = 𝐼𝑠 = 𝑆) → (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖))) = (𝑤 RingHom (𝑆s (𝑏𝑚 𝐼))))
4340adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 = 𝐼𝑠 = 𝑆) → (𝑏𝑚 𝑖) = (𝑏𝑚 𝐼))
4443xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 = 𝐼𝑠 = 𝑆) → ((𝑏𝑚 𝑖) × {𝑥}) = ((𝑏𝑚 𝐼) × {𝑥}))
4544mpteq2dv 4745 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 = 𝐼𝑠 = 𝑆) → (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) = (𝑥𝑟 ↦ ((𝑏𝑚 𝐼) × {𝑥})))
4645eqeq2d 2632 . . . . . . . . . . . . . . . . . . 19 ((𝑖 = 𝐼𝑠 = 𝑆) → ((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ↔ (𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝐼) × {𝑥}))))
4735, 36oveqan12d 6669 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 = 𝐼𝑠 = 𝑆) → (𝑖 mVar (𝑠s 𝑟)) = (𝐼 mVar (𝑆s 𝑟)))
4847coeq2d 5284 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 = 𝐼𝑠 = 𝑆) → (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))))
49 simpl 473 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 = 𝐼𝑠 = 𝑆) → 𝑖 = 𝐼)
5043mpteq1d 4738 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 = 𝐼𝑠 = 𝑆) → (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥)) = (𝑔 ∈ (𝑏𝑚 𝐼) ↦ (𝑔𝑥)))
5149, 50mpteq12dv 4733 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 = 𝐼𝑠 = 𝑆) → (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝑏𝑚 𝐼) ↦ (𝑔𝑥))))
5248, 51eqeq12d 2637 . . . . . . . . . . . . . . . . . . 19 ((𝑖 = 𝐼𝑠 = 𝑆) → ((𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥))) ↔ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝑏𝑚 𝐼) ↦ (𝑔𝑥)))))
5346, 52anbi12d 747 . . . . . . . . . . . . . . . . . 18 ((𝑖 = 𝐼𝑠 = 𝑆) → (((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥)))) ↔ ((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝑏𝑚 𝐼) ↦ (𝑔𝑥))))))
5442, 53riotaeqbidv 6614 . . . . . . . . . . . . . . . . 17 ((𝑖 = 𝐼𝑠 = 𝑆) → (𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥))))) = (𝑓 ∈ (𝑤 RingHom (𝑆s (𝑏𝑚 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝑏𝑚 𝐼) ↦ (𝑔𝑥))))))
5554csbeq2dv 3992 . . . . . . . . . . . . . . . 16 ((𝑖 = 𝐼𝑠 = 𝑆) → (𝐼 mPoly (𝑆s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥))))) = (𝐼 mPoly (𝑆s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑆s (𝑏𝑚 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝑏𝑚 𝐼) ↦ (𝑔𝑥))))))
5638, 55eqtrd 2656 . . . . . . . . . . . . . . 15 ((𝑖 = 𝐼𝑠 = 𝑆) → (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥))))) = (𝐼 mPoly (𝑆s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑆s (𝑏𝑚 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝑏𝑚 𝐼) ↦ (𝑔𝑥))))))
5756csbeq2dv 3992 . . . . . . . . . . . . . 14 ((𝑖 = 𝐼𝑠 = 𝑆) → (Base‘𝑆) / 𝑏(𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥))))) = (Base‘𝑆) / 𝑏(𝐼 mPoly (𝑆s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑆s (𝑏𝑚 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝑏𝑚 𝐼) ↦ (𝑔𝑥))))))
5834, 57eqtrd 2656 . . . . . . . . . . . . 13 ((𝑖 = 𝐼𝑠 = 𝑆) → (Base‘𝑠) / 𝑏(𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥))))) = (Base‘𝑆) / 𝑏(𝐼 mPoly (𝑆s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑆s (𝑏𝑚 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝑏𝑚 𝐼) ↦ (𝑔𝑥))))))
5931, 58mpteq12dv 4733 . . . . . . . . . . . 12 ((𝑖 = 𝐼𝑠 = 𝑆) → (𝑟 ∈ (SubRing‘𝑠) ↦ (Base‘𝑠) / 𝑏(𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥)))))) = (𝑟 ∈ (SubRing‘𝑆) ↦ (Base‘𝑆) / 𝑏(𝐼 mPoly (𝑆s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑆s (𝑏𝑚 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝑏𝑚 𝐼) ↦ (𝑔𝑥)))))))
6029, 59syl5eq 2668 . . . . . . . . . . 11 ((𝑖 = 𝐼𝑠 = 𝑆) → (Base‘𝑠) / 𝑏(𝑟 ∈ (SubRing‘𝑠) ↦ (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏𝑚 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏𝑚 𝑖) ↦ (𝑔𝑥)))))) = (𝑟 ∈ (SubRing‘𝑆) ↦ (Base‘𝑆) / 𝑏(𝐼 mPoly (𝑆s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑆s (𝑏𝑚 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝑏𝑚 𝐼) ↦ (𝑔𝑥)))))))
61 fvex 6201 . . . . . . . . . . . 12 (SubRing‘𝑆) ∈ V
6261mptex 6486 . . . . . . . . . . 11 (𝑟 ∈ (SubRing‘𝑆) ↦ (Base‘𝑆) / 𝑏(𝐼 mPoly (𝑆s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑆s (𝑏𝑚 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝑏𝑚 𝐼) ↦ (𝑔𝑥)))))) ∈ V
6360, 16, 62ovmpt2a 6791 . . . . . . . . . 10 ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → (𝐼 evalSub 𝑆) = (𝑟 ∈ (SubRing‘𝑆) ↦ (Base‘𝑆) / 𝑏(𝐼 mPoly (𝑆s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑆s (𝑏𝑚 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝑏𝑚 𝐼) ↦ (𝑔𝑥)))))))
6463dmeqd 5326 . . . . . . . . 9 ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → dom (𝐼 evalSub 𝑆) = dom (𝑟 ∈ (SubRing‘𝑆) ↦ (Base‘𝑆) / 𝑏(𝐼 mPoly (𝑆s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑆s (𝑏𝑚 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝑏𝑚 𝐼) ↦ (𝑔𝑥)))))))
65 eqid 2622 . . . . . . . . . 10 (𝑟 ∈ (SubRing‘𝑆) ↦ (Base‘𝑆) / 𝑏(𝐼 mPoly (𝑆s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑆s (𝑏𝑚 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝑏𝑚 𝐼) ↦ (𝑔𝑥)))))) = (𝑟 ∈ (SubRing‘𝑆) ↦ (Base‘𝑆) / 𝑏(𝐼 mPoly (𝑆s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑆s (𝑏𝑚 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝑏𝑚 𝐼) ↦ (𝑔𝑥))))))
6665dmmptss 5631 . . . . . . . . 9 dom (𝑟 ∈ (SubRing‘𝑆) ↦ (Base‘𝑆) / 𝑏(𝐼 mPoly (𝑆s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑆s (𝑏𝑚 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏𝑚 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝑏𝑚 𝐼) ↦ (𝑔𝑥)))))) ⊆ (SubRing‘𝑆)
6764, 66syl6eqss 3655 . . . . . . . 8 ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → dom (𝐼 evalSub 𝑆) ⊆ (SubRing‘𝑆))
6867ssneld 3605 . . . . . . 7 ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → (¬ 𝑅 ∈ (SubRing‘𝑆) → ¬ 𝑅 ∈ dom (𝐼 evalSub 𝑆)))
69 ndmfv 6218 . . . . . . 7 𝑅 ∈ dom (𝐼 evalSub 𝑆) → ((𝐼 evalSub 𝑆)‘𝑅) = ∅)
7068, 69syl6 35 . . . . . 6 ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → (¬ 𝑅 ∈ (SubRing‘𝑆) → ((𝐼 evalSub 𝑆)‘𝑅) = ∅))
7170necon1ad 2811 . . . . 5 ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → (((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → 𝑅 ∈ (SubRing‘𝑆)))
7271com12 32 . . . 4 (((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → 𝑅 ∈ (SubRing‘𝑆)))
7322, 72jcai 559 . . 3 (((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) ∧ 𝑅 ∈ (SubRing‘𝑆)))
74 df-3an 1039 . . 3 ((𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ↔ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) ∧ 𝑅 ∈ (SubRing‘𝑆)))
7573, 74sylibr 224 . 2 (((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)))
763, 7, 753syl 18 1 (𝑋𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  Vcvv 3200  csb 3533  c0 3915  {csn 4177  cmpt 4729   × cxp 5112  dom cdm 5114  ran crn 5115  ccom 5118  cfv 5888  crio 6610  (class class class)co 6650  𝑚 cmap 7857  Basecbs 15857  s cress 15858  s cpws 16107  CRingccrg 18548   RingHom crh 18712  SubRingcsubrg 18776  algSccascl 19311   mVar cmvr 19352   mPoly cmpl 19353   evalSub ces 19504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-evls 19506
This theorem is referenced by:  mpff  19533  mpfaddcl  19534  mpfmulcl  19535  mpfind  19536  pf1rcl  19713  mpfpf1  19715
  Copyright terms: Public domain W3C validator