MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1mpf Structured version   Visualization version   GIF version

Theorem pf1mpf 19716
Description: Convert a univariate polynomial function to multivariate. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
pf1f.b 𝐵 = (Base‘𝑅)
mpfpf1.q 𝐸 = ran (1𝑜 eval 𝑅)
Assertion
Ref Expression
pf1mpf (𝐹𝑄 → (𝐹 ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) ∈ 𝐸)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝑄   𝑥,𝑅
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem pf1mpf
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pf1rcl.q . . 3 𝑄 = ran (eval1𝑅)
21pf1rcl 19713 . 2 (𝐹𝑄𝑅 ∈ CRing)
3 id 22 . . . 4 (𝐹𝑄𝐹𝑄)
43, 1syl6eleq 2711 . . 3 (𝐹𝑄𝐹 ∈ ran (eval1𝑅))
5 eqid 2622 . . . . . 6 (eval1𝑅) = (eval1𝑅)
6 eqid 2622 . . . . . 6 (Poly1𝑅) = (Poly1𝑅)
7 eqid 2622 . . . . . 6 (𝑅s 𝐵) = (𝑅s 𝐵)
8 pf1f.b . . . . . 6 𝐵 = (Base‘𝑅)
95, 6, 7, 8evl1rhm 19696 . . . . 5 (𝑅 ∈ CRing → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
102, 9syl 17 . . . 4 (𝐹𝑄 → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
11 eqid 2622 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
12 eqid 2622 . . . . 5 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
1311, 12rhmf 18726 . . . 4 ((eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
14 ffn 6045 . . . 4 ((eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)) → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
15 fvelrnb 6243 . . . 4 ((eval1𝑅) Fn (Base‘(Poly1𝑅)) → (𝐹 ∈ ran (eval1𝑅) ↔ ∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹))
1610, 13, 14, 154syl 19 . . 3 (𝐹𝑄 → (𝐹 ∈ ran (eval1𝑅) ↔ ∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹))
174, 16mpbid 222 . 2 (𝐹𝑄 → ∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹)
18 eqid 2622 . . . . . . . 8 (1𝑜 eval 𝑅) = (1𝑜 eval 𝑅)
19 eqid 2622 . . . . . . . 8 (1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅)
20 eqid 2622 . . . . . . . . 9 (PwSer1𝑅) = (PwSer1𝑅)
216, 20, 11ply1bas 19565 . . . . . . . 8 (Base‘(Poly1𝑅)) = (Base‘(1𝑜 mPoly 𝑅))
225, 18, 8, 19, 21evl1val 19693 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑦) = (((1𝑜 eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1𝑜 × {𝑧}))))
2322coeq1d 5283 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) = ((((1𝑜 eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1𝑜 × {𝑧}))) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))))
24 coass 5654 . . . . . . 7 ((((1𝑜 eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1𝑜 × {𝑧}))) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) = (((1𝑜 eval 𝑅)‘𝑦) ∘ ((𝑧𝐵 ↦ (1𝑜 × {𝑧})) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))))
25 df1o2 7572 . . . . . . . . . . 11 1𝑜 = {∅}
26 fvex 6201 . . . . . . . . . . . 12 (Base‘𝑅) ∈ V
278, 26eqeltri 2697 . . . . . . . . . . 11 𝐵 ∈ V
28 0ex 4790 . . . . . . . . . . 11 ∅ ∈ V
29 eqid 2622 . . . . . . . . . . 11 (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅)) = (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))
3025, 27, 28, 29mapsncnv 7904 . . . . . . . . . 10 (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅)) = (𝑧𝐵 ↦ (1𝑜 × {𝑧}))
3130coeq1i 5281 . . . . . . . . 9 ((𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅)) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) = ((𝑧𝐵 ↦ (1𝑜 × {𝑧})) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅)))
3225, 27, 28, 29mapsnf1o2 7905 . . . . . . . . . 10 (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅)):(𝐵𝑚 1𝑜)–1-1-onto𝐵
33 f1ococnv1 6165 . . . . . . . . . 10 ((𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅)):(𝐵𝑚 1𝑜)–1-1-onto𝐵 → ((𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅)) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) = ( I ↾ (𝐵𝑚 1𝑜)))
3432, 33mp1i 13 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅)) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) = ( I ↾ (𝐵𝑚 1𝑜)))
3531, 34syl5eqr 2670 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((𝑧𝐵 ↦ (1𝑜 × {𝑧})) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) = ( I ↾ (𝐵𝑚 1𝑜)))
3635coeq2d 5284 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((1𝑜 eval 𝑅)‘𝑦) ∘ ((𝑧𝐵 ↦ (1𝑜 × {𝑧})) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅)))) = (((1𝑜 eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵𝑚 1𝑜))))
3724, 36syl5eq 2668 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((((1𝑜 eval 𝑅)‘𝑦) ∘ (𝑧𝐵 ↦ (1𝑜 × {𝑧}))) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) = (((1𝑜 eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵𝑚 1𝑜))))
38 eqid 2622 . . . . . . . 8 (𝑅s (𝐵𝑚 1𝑜)) = (𝑅s (𝐵𝑚 1𝑜))
39 eqid 2622 . . . . . . . 8 (Base‘(𝑅s (𝐵𝑚 1𝑜))) = (Base‘(𝑅s (𝐵𝑚 1𝑜)))
40 simpl 473 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → 𝑅 ∈ CRing)
41 ovexd 6680 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (𝐵𝑚 1𝑜) ∈ V)
42 1on 7567 . . . . . . . . . . 11 1𝑜 ∈ On
4318, 8, 19, 38evlrhm 19525 . . . . . . . . . . 11 ((1𝑜 ∈ On ∧ 𝑅 ∈ CRing) → (1𝑜 eval 𝑅) ∈ ((1𝑜 mPoly 𝑅) RingHom (𝑅s (𝐵𝑚 1𝑜))))
4442, 43mpan 706 . . . . . . . . . 10 (𝑅 ∈ CRing → (1𝑜 eval 𝑅) ∈ ((1𝑜 mPoly 𝑅) RingHom (𝑅s (𝐵𝑚 1𝑜))))
4521, 39rhmf 18726 . . . . . . . . . 10 ((1𝑜 eval 𝑅) ∈ ((1𝑜 mPoly 𝑅) RingHom (𝑅s (𝐵𝑚 1𝑜))) → (1𝑜 eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵𝑚 1𝑜))))
4644, 45syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → (1𝑜 eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵𝑚 1𝑜))))
4746ffvelrnda 6359 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1𝑜 eval 𝑅)‘𝑦) ∈ (Base‘(𝑅s (𝐵𝑚 1𝑜))))
4838, 8, 39, 40, 41, 47pwselbas 16149 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1𝑜 eval 𝑅)‘𝑦):(𝐵𝑚 1𝑜)⟶𝐵)
49 fcoi1 6078 . . . . . . 7 (((1𝑜 eval 𝑅)‘𝑦):(𝐵𝑚 1𝑜)⟶𝐵 → (((1𝑜 eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵𝑚 1𝑜))) = ((1𝑜 eval 𝑅)‘𝑦))
5048, 49syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((1𝑜 eval 𝑅)‘𝑦) ∘ ( I ↾ (𝐵𝑚 1𝑜))) = ((1𝑜 eval 𝑅)‘𝑦))
5123, 37, 503eqtrd 2660 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) = ((1𝑜 eval 𝑅)‘𝑦))
52 ffn 6045 . . . . . . . 8 ((1𝑜 eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵𝑚 1𝑜))) → (1𝑜 eval 𝑅) Fn (Base‘(Poly1𝑅)))
5346, 52syl 17 . . . . . . 7 (𝑅 ∈ CRing → (1𝑜 eval 𝑅) Fn (Base‘(Poly1𝑅)))
54 fnfvelrn 6356 . . . . . . 7 (((1𝑜 eval 𝑅) Fn (Base‘(Poly1𝑅)) ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1𝑜 eval 𝑅)‘𝑦) ∈ ran (1𝑜 eval 𝑅))
5553, 54sylan 488 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1𝑜 eval 𝑅)‘𝑦) ∈ ran (1𝑜 eval 𝑅))
56 mpfpf1.q . . . . . 6 𝐸 = ran (1𝑜 eval 𝑅)
5755, 56syl6eleqr 2712 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → ((1𝑜 eval 𝑅)‘𝑦) ∈ 𝐸)
5851, 57eqeltrd 2701 . . . 4 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) ∈ 𝐸)
59 coeq1 5279 . . . . 5 (((eval1𝑅)‘𝑦) = 𝐹 → (((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) = (𝐹 ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))))
6059eleq1d 2686 . . . 4 (((eval1𝑅)‘𝑦) = 𝐹 → ((((eval1𝑅)‘𝑦) ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) ∈ 𝐸 ↔ (𝐹 ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) ∈ 𝐸))
6158, 60syl5ibcom 235 . . 3 ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘(Poly1𝑅))) → (((eval1𝑅)‘𝑦) = 𝐹 → (𝐹 ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) ∈ 𝐸))
6261rexlimdva 3031 . 2 (𝑅 ∈ CRing → (∃𝑦 ∈ (Base‘(Poly1𝑅))((eval1𝑅)‘𝑦) = 𝐹 → (𝐹 ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) ∈ 𝐸))
632, 17, 62sylc 65 1 (𝐹𝑄 → (𝐹 ∘ (𝑥 ∈ (𝐵𝑚 1𝑜) ↦ (𝑥‘∅))) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200  c0 3915  {csn 4177  cmpt 4729   I cid 5023   × cxp 5112  ccnv 5113  ran crn 5115  cres 5116  ccom 5118  Oncon0 5723   Fn wfn 5883  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  1𝑜c1o 7553  𝑚 cmap 7857  Basecbs 15857  s cpws 16107  CRingccrg 18548   RingHom crh 18712   mPoly cmpl 19353   eval cevl 19505  PwSer1cps1 19545  Poly1cpl1 19547  eval1ce1 19679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-srg 18506  df-ring 18549  df-cring 18550  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-assa 19312  df-asp 19313  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-evls 19506  df-evl 19507  df-psr1 19550  df-ply1 19552  df-evl1 19681
This theorem is referenced by:  pf1ind  19719
  Copyright terms: Public domain W3C validator