MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1rcl Structured version   Visualization version   Unicode version

Theorem pf1rcl 19713
Description: Reverse closure for the set of polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypothesis
Ref Expression
pf1rcl.q  |-  Q  =  ran  (eval1 `  R )
Assertion
Ref Expression
pf1rcl  |-  ( X  e.  Q  ->  R  e.  CRing )

Proof of Theorem pf1rcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 3920 . 2  |-  ( X  e.  Q  ->  -.  Q  =  (/) )
2 pf1rcl.q . . . 4  |-  Q  =  ran  (eval1 `  R )
3 eqid 2622 . . . . . 6  |-  (eval1 `  R
)  =  (eval1 `  R
)
4 eqid 2622 . . . . . 6  |-  ( 1o eval  R )  =  ( 1o eval  R )
5 eqid 2622 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
63, 4, 5evl1fval 19692 . . . . 5  |-  (eval1 `  R
)  =  ( ( x  e.  ( (
Base `  R )  ^m  ( ( Base `  R
)  ^m  1o )
)  |->  ( x  o.  ( y  e.  (
Base `  R )  |->  ( 1o  X.  {
y } ) ) ) )  o.  ( 1o eval  R ) )
76rneqi 5352 . . . 4  |-  ran  (eval1 `  R )  =  ran  ( ( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) )  o.  ( 1o eval  R ) )
8 rnco2 5642 . . . 4  |-  ran  (
( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) )  o.  ( 1o eval  R ) )  =  ( ( x  e.  ( (
Base `  R )  ^m  ( ( Base `  R
)  ^m  1o )
)  |->  ( x  o.  ( y  e.  (
Base `  R )  |->  ( 1o  X.  {
y } ) ) ) ) " ran  ( 1o eval  R )
)
92, 7, 83eqtri 2648 . . 3  |-  Q  =  ( ( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) ) " ran  ( 1o eval  R ) )
10 inss2 3834 . . . . 5  |-  ( dom  ( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) )  i^i 
ran  ( 1o eval  R
) )  C_  ran  ( 1o eval  R )
11 neq0 3930 . . . . . . 7  |-  ( -. 
ran  ( 1o eval  R
)  =  (/)  <->  E. x  x  e.  ran  ( 1o eval  R ) )
124, 5evlval 19524 . . . . . . . . . . 11  |-  ( 1o eval  R )  =  ( ( 1o evalSub  R ) `  ( Base `  R
) )
1312rneqi 5352 . . . . . . . . . 10  |-  ran  ( 1o eval  R )  =  ran  ( ( 1o evalSub  R ) `
 ( Base `  R
) )
1413mpfrcl 19518 . . . . . . . . 9  |-  ( x  e.  ran  ( 1o eval  R )  ->  ( 1o  e.  _V  /\  R  e.  CRing  /\  ( Base `  R )  e.  (SubRing `  R ) ) )
1514simp2d 1074 . . . . . . . 8  |-  ( x  e.  ran  ( 1o eval  R )  ->  R  e.  CRing )
1615exlimiv 1858 . . . . . . 7  |-  ( E. x  x  e.  ran  ( 1o eval  R )  ->  R  e.  CRing )
1711, 16sylbi 207 . . . . . 6  |-  ( -. 
ran  ( 1o eval  R
)  =  (/)  ->  R  e.  CRing )
1817con1i 144 . . . . 5  |-  ( -.  R  e.  CRing  ->  ran  ( 1o eval  R )  =  (/) )
19 sseq0 3975 . . . . 5  |-  ( ( ( dom  ( x  e.  ( ( Base `  R )  ^m  (
( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) )  i^i 
ran  ( 1o eval  R
) )  C_  ran  ( 1o eval  R )  /\  ran  ( 1o eval  R
)  =  (/) )  -> 
( dom  ( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) )  i^i 
ran  ( 1o eval  R
) )  =  (/) )
2010, 18, 19sylancr 695 . . . 4  |-  ( -.  R  e.  CRing  ->  ( dom  ( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) )  i^i 
ran  ( 1o eval  R
) )  =  (/) )
21 imadisj 5484 . . . 4  |-  ( ( ( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) ) " ran  ( 1o eval  R ) )  =  (/)  <->  ( dom  ( x  e.  (
( Base `  R )  ^m  ( ( Base `  R
)  ^m  1o )
)  |->  ( x  o.  ( y  e.  (
Base `  R )  |->  ( 1o  X.  {
y } ) ) ) )  i^i  ran  ( 1o eval  R )
)  =  (/) )
2220, 21sylibr 224 . . 3  |-  ( -.  R  e.  CRing  ->  (
( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) ) " ran  ( 1o eval  R ) )  =  (/) )
239, 22syl5eq 2668 . 2  |-  ( -.  R  e.  CRing  ->  Q  =  (/) )
241, 23nsyl2 142 1  |-  ( X  e.  Q  ->  R  e.  CRing )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118   ` cfv 5888  (class class class)co 6650   1oc1o 7553    ^m cmap 7857   Basecbs 15857   CRingccrg 18548  SubRingcsubrg 18776   evalSub ces 19504   eval cevl 19505  eval1ce1 19679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-evls 19506  df-evl 19507  df-evl1 19681
This theorem is referenced by:  pf1f  19714  pf1mpf  19716  pf1addcl  19717  pf1mulcl  19718  pf1ind  19719
  Copyright terms: Public domain W3C validator