Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofldchr Structured version   Visualization version   GIF version

Theorem ofldchr 29814
Description: The characteristic of an ordered field is zero. (Contributed by Thierry Arnoux, 21-Jan-2018.) (Proof shortened by AV, 6-Oct-2020.)
Assertion
Ref Expression
ofldchr (𝐹 ∈ oField → (chr‘𝐹) = 0)

Proof of Theorem ofldchr
Dummy variables 𝑚 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3 (od‘𝐹) = (od‘𝐹)
2 eqid 2622 . . 3 (1r𝐹) = (1r𝐹)
3 eqid 2622 . . 3 (chr‘𝐹) = (chr‘𝐹)
41, 2, 3chrval 19873 . 2 ((od‘𝐹)‘(1r𝐹)) = (chr‘𝐹)
5 ofldfld 29810 . . . . 5 (𝐹 ∈ oField → 𝐹 ∈ Field)
6 isfld 18756 . . . . . 6 (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing))
76simplbi 476 . . . . 5 (𝐹 ∈ Field → 𝐹 ∈ DivRing)
8 drngring 18754 . . . . 5 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
95, 7, 83syl 18 . . . 4 (𝐹 ∈ oField → 𝐹 ∈ Ring)
10 eqid 2622 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
1110, 2ringidcl 18568 . . . 4 (𝐹 ∈ Ring → (1r𝐹) ∈ (Base‘𝐹))
12 eqid 2622 . . . . 5 (.g𝐹) = (.g𝐹)
13 eqid 2622 . . . . 5 (0g𝐹) = (0g𝐹)
14 eqid 2622 . . . . 5 {𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = {𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}
1510, 12, 13, 1, 14odval 17953 . . . 4 ((1r𝐹) ∈ (Base‘𝐹) → ((od‘𝐹)‘(1r𝐹)) = if({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}, ℝ, < )))
169, 11, 153syl 18 . . 3 (𝐹 ∈ oField → ((od‘𝐹)‘(1r𝐹)) = if({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}, ℝ, < )))
17 oveq1 6657 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝑛(.g𝐹)(1r𝐹)) = (1(.g𝐹)(1r𝐹)))
1817breq2d 4665 . . . . . . . . . . . 12 (𝑛 = 1 → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)(1(.g𝐹)(1r𝐹))))
1918imbi2d 330 . . . . . . . . . . 11 (𝑛 = 1 → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(1(.g𝐹)(1r𝐹)))))
20 oveq1 6657 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝑛(.g𝐹)(1r𝐹)) = (𝑚(.g𝐹)(1r𝐹)))
2120breq2d 4665 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))))
2221imbi2d 330 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)))))
23 oveq1 6657 . . . . . . . . . . . . 13 (𝑛 = (𝑚 + 1) → (𝑛(.g𝐹)(1r𝐹)) = ((𝑚 + 1)(.g𝐹)(1r𝐹)))
2423breq2d 4665 . . . . . . . . . . . 12 (𝑛 = (𝑚 + 1) → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹))))
2524imbi2d 330 . . . . . . . . . . 11 (𝑛 = (𝑚 + 1) → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))))
26 oveq1 6657 . . . . . . . . . . . . 13 (𝑛 = 𝑦 → (𝑛(.g𝐹)(1r𝐹)) = (𝑦(.g𝐹)(1r𝐹)))
2726breq2d 4665 . . . . . . . . . . . 12 (𝑛 = 𝑦 → ((0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹)) ↔ (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹))))
2827imbi2d 330 . . . . . . . . . . 11 (𝑛 = 𝑦 → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑛(.g𝐹)(1r𝐹))) ↔ (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)))))
29 eqid 2622 . . . . . . . . . . . . 13 (lt‘𝐹) = (lt‘𝐹)
3013, 2, 29ofldlt1 29813 . . . . . . . . . . . 12 (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(1r𝐹))
319, 11syl 17 . . . . . . . . . . . . 13 (𝐹 ∈ oField → (1r𝐹) ∈ (Base‘𝐹))
3210, 12mulg1 17548 . . . . . . . . . . . . 13 ((1r𝐹) ∈ (Base‘𝐹) → (1(.g𝐹)(1r𝐹)) = (1r𝐹))
3331, 32syl 17 . . . . . . . . . . . 12 (𝐹 ∈ oField → (1(.g𝐹)(1r𝐹)) = (1r𝐹))
3430, 33breqtrrd 4681 . . . . . . . . . . 11 (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(1(.g𝐹)(1r𝐹)))
35 ofldtos 29811 . . . . . . . . . . . . . . . 16 (𝐹 ∈ oField → 𝐹 ∈ Toset)
36 tospos 29658 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Toset → 𝐹 ∈ Poset)
3735, 36syl 17 . . . . . . . . . . . . . . 15 (𝐹 ∈ oField → 𝐹 ∈ Poset)
3837ad2antlr 763 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ Poset)
39 ringgrp 18552 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
409, 39syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ oField → 𝐹 ∈ Grp)
4140ad2antlr 763 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ Grp)
4210, 13grpidcl 17450 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Grp → (0g𝐹) ∈ (Base‘𝐹))
4341, 42syl 17 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹) ∈ (Base‘𝐹))
44 grpmnd 17429 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Grp → 𝐹 ∈ Mnd)
45 mndmgm 17300 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Mnd → 𝐹 ∈ Mgm)
4644, 45syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Grp → 𝐹 ∈ Mgm)
4741, 46syl 17 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ Mgm)
48 simpll 790 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝑚 ∈ ℕ)
4931ad2antlr 763 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (1r𝐹) ∈ (Base‘𝐹))
5010, 12mulgnncl 17556 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Mgm ∧ 𝑚 ∈ ℕ ∧ (1r𝐹) ∈ (Base‘𝐹)) → (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
5147, 48, 49, 50syl3anc 1326 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
5248peano2nnd 11037 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚 + 1) ∈ ℕ)
5310, 12mulgnncl 17556 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Mgm ∧ (𝑚 + 1) ∈ ℕ ∧ (1r𝐹) ∈ (Base‘𝐹)) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
5447, 52, 49, 53syl3anc 1326 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))
5543, 51, 543jca 1242 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((0g𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹)))
56 simpr 477 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)))
57 simplr 792 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ oField)
58 isofld 29802 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
5958simprbi 480 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ oField → 𝐹 ∈ oRing)
60 orngogrp 29801 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ oRing → 𝐹 ∈ oGrp)
6157, 59, 603syl 18 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ oGrp)
6230ad2antlr 763 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)(1r𝐹))
63 eqid 2622 . . . . . . . . . . . . . . . . 17 (+g𝐹) = (+g𝐹)
6410, 29, 63ogrpaddlt 29718 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ oGrp ∧ ((0g𝐹) ∈ (Base‘𝐹) ∧ (1r𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹)) ∧ (0g𝐹)(lt‘𝐹)(1r𝐹)) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹)))(lt‘𝐹)((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
6561, 43, 49, 51, 62, 64syl131anc 1339 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹)))(lt‘𝐹)((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
6610, 63, 13grplid 17452 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ Grp ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹)) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))) = (𝑚(.g𝐹)(1r𝐹)))
6741, 51, 66syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))) = (𝑚(.g𝐹)(1r𝐹)))
6867eqcomd 2628 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚(.g𝐹)(1r𝐹)) = ((0g𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
6910, 12, 63mulgnnp1 17549 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ (1r𝐹) ∈ (Base‘𝐹)) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) = ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)))
7048, 49, 69syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) = ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)))
71 ringcmn 18581 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ Ring → 𝐹 ∈ CMnd)
7257, 9, 713syl 18 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → 𝐹 ∈ CMnd)
7310, 63cmncom 18209 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ CMnd ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ (1r𝐹) ∈ (Base‘𝐹)) → ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)) = ((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
7472, 51, 49, 73syl3anc 1326 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚(.g𝐹)(1r𝐹))(+g𝐹)(1r𝐹)) = ((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
7570, 74eqtrd 2656 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → ((𝑚 + 1)(.g𝐹)(1r𝐹)) = ((1r𝐹)(+g𝐹)(𝑚(.g𝐹)(1r𝐹))))
7665, 68, 753brtr4d 4685 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝑚(.g𝐹)(1r𝐹))(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))
7710, 29plttr 16970 . . . . . . . . . . . . . . 15 ((𝐹 ∈ Poset ∧ ((0g𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))) → (((0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)) ∧ (𝑚(.g𝐹)(1r𝐹))(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹))))
7877imp 445 . . . . . . . . . . . . . 14 (((𝐹 ∈ Poset ∧ ((0g𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g𝐹)(1r𝐹)) ∈ (Base‘𝐹))) ∧ ((0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)) ∧ (𝑚(.g𝐹)(1r𝐹))(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))
7938, 55, 56, 76, 78syl22anc 1327 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧ (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))
8079exp31 630 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝐹 ∈ oField → ((0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹)) → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))))
8180a2d 29 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑚(.g𝐹)(1r𝐹))) → (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)((𝑚 + 1)(.g𝐹)(1r𝐹)))))
8219, 22, 25, 28, 34, 81nnind 11038 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝐹 ∈ oField → (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹))))
8382impcom 446 . . . . . . . . 9 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → (0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)))
84 fvex 6201 . . . . . . . . . . 11 (0g𝐹) ∈ V
85 ovex 6678 . . . . . . . . . . 11 (𝑦(.g𝐹)(1r𝐹)) ∈ V
8629pltne 16962 . . . . . . . . . . 11 ((𝐹 ∈ oField ∧ (0g𝐹) ∈ V ∧ (𝑦(.g𝐹)(1r𝐹)) ∈ V) → ((0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹))))
8784, 85, 86mp3an23 1416 . . . . . . . . . 10 (𝐹 ∈ oField → ((0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹))))
8887adantr 481 . . . . . . . . 9 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → ((0g𝐹)(lt‘𝐹)(𝑦(.g𝐹)(1r𝐹)) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹))))
8983, 88mpd 15 . . . . . . . 8 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → (0g𝐹) ≠ (𝑦(.g𝐹)(1r𝐹)))
9089necomd 2849 . . . . . . 7 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → (𝑦(.g𝐹)(1r𝐹)) ≠ (0g𝐹))
9190neneqd 2799 . . . . . 6 ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → ¬ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹))
9291ralrimiva 2966 . . . . 5 (𝐹 ∈ oField → ∀𝑦 ∈ ℕ ¬ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹))
93 rabeq0 3957 . . . . 5 ({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅ ↔ ∀𝑦 ∈ ℕ ¬ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹))
9492, 93sylibr 224 . . . 4 (𝐹 ∈ oField → {𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅)
9594iftrued 4094 . . 3 (𝐹 ∈ oField → if({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g𝐹)(1r𝐹)) = (0g𝐹)}, ℝ, < )) = 0)
9616, 95eqtrd 2656 . 2 (𝐹 ∈ oField → ((od‘𝐹)‘(1r𝐹)) = 0)
974, 96syl5eqr 2670 1 (𝐹 ∈ oField → (chr‘𝐹) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  Vcvv 3200  c0 3915  ifcif 4086   class class class wbr 4653  cfv 5888  (class class class)co 6650  infcinf 8347  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cn 11020  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Posetcpo 16940  ltcplt 16941  Tosetctos 17033  Mgmcmgm 17240  Mndcmnd 17294  Grpcgrp 17422  .gcmg 17540  odcod 17944  CMndccmn 18193  1rcur 18501  Ringcrg 18547  CRingccrg 18548  DivRingcdr 18747  Fieldcfield 18748  chrcchr 19850  oGrpcogrp 29698  oRingcorng 29795  oFieldcofld 29796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-toset 17034  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mulg 17541  df-od 17948  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-drng 18749  df-field 18750  df-chr 19854  df-omnd 29699  df-ogrp 29700  df-orng 29797  df-ofld 29798
This theorem is referenced by:  rerrext  30053  cnrrext  30054
  Copyright terms: Public domain W3C validator