| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. . 3
⊢
(od‘𝐹) =
(od‘𝐹) |
| 2 | | eqid 2622 |
. . 3
⊢
(1r‘𝐹) = (1r‘𝐹) |
| 3 | | eqid 2622 |
. . 3
⊢
(chr‘𝐹) =
(chr‘𝐹) |
| 4 | 1, 2, 3 | chrval 19873 |
. 2
⊢
((od‘𝐹)‘(1r‘𝐹)) = (chr‘𝐹) |
| 5 | | ofldfld 29810 |
. . . . 5
⊢ (𝐹 ∈ oField → 𝐹 ∈ Field) |
| 6 | | isfld 18756 |
. . . . . 6
⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) |
| 7 | 6 | simplbi 476 |
. . . . 5
⊢ (𝐹 ∈ Field → 𝐹 ∈
DivRing) |
| 8 | | drngring 18754 |
. . . . 5
⊢ (𝐹 ∈ DivRing → 𝐹 ∈ Ring) |
| 9 | 5, 7, 8 | 3syl 18 |
. . . 4
⊢ (𝐹 ∈ oField → 𝐹 ∈ Ring) |
| 10 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝐹) =
(Base‘𝐹) |
| 11 | 10, 2 | ringidcl 18568 |
. . . 4
⊢ (𝐹 ∈ Ring →
(1r‘𝐹)
∈ (Base‘𝐹)) |
| 12 | | eqid 2622 |
. . . . 5
⊢
(.g‘𝐹) = (.g‘𝐹) |
| 13 | | eqid 2622 |
. . . . 5
⊢
(0g‘𝐹) = (0g‘𝐹) |
| 14 | | eqid 2622 |
. . . . 5
⊢ {𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} = {𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} |
| 15 | 10, 12, 13, 1, 14 | odval 17953 |
. . . 4
⊢
((1r‘𝐹) ∈ (Base‘𝐹) → ((od‘𝐹)‘(1r‘𝐹)) = if({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)}, ℝ, < ))) |
| 16 | 9, 11, 15 | 3syl 18 |
. . 3
⊢ (𝐹 ∈ oField →
((od‘𝐹)‘(1r‘𝐹)) = if({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)}, ℝ, < ))) |
| 17 | | oveq1 6657 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → (𝑛(.g‘𝐹)(1r‘𝐹)) = (1(.g‘𝐹)(1r‘𝐹))) |
| 18 | 17 | breq2d 4665 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 →
((0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹)) ↔ (0g‘𝐹)(lt‘𝐹)(1(.g‘𝐹)(1r‘𝐹)))) |
| 19 | 18 | imbi2d 330 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → ((𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹))) ↔ (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(1(.g‘𝐹)(1r‘𝐹))))) |
| 20 | | oveq1 6657 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → (𝑛(.g‘𝐹)(1r‘𝐹)) = (𝑚(.g‘𝐹)(1r‘𝐹))) |
| 21 | 20 | breq2d 4665 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → ((0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹)) ↔ (0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) |
| 22 | 21 | imbi2d 330 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → ((𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹))) ↔ (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))))) |
| 23 | | oveq1 6657 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑚 + 1) → (𝑛(.g‘𝐹)(1r‘𝐹)) = ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))) |
| 24 | 23 | breq2d 4665 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑚 + 1) → ((0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹)) ↔ (0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)))) |
| 25 | 24 | imbi2d 330 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑚 + 1) → ((𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹))) ↔ (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))))) |
| 26 | | oveq1 6657 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑦 → (𝑛(.g‘𝐹)(1r‘𝐹)) = (𝑦(.g‘𝐹)(1r‘𝐹))) |
| 27 | 26 | breq2d 4665 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑦 → ((0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹)) ↔ (0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹)))) |
| 28 | 27 | imbi2d 330 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑦 → ((𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑛(.g‘𝐹)(1r‘𝐹))) ↔ (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹))))) |
| 29 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(lt‘𝐹) =
(lt‘𝐹) |
| 30 | 13, 2, 29 | ofldlt1 29813 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(1r‘𝐹)) |
| 31 | 9, 11 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ oField →
(1r‘𝐹)
∈ (Base‘𝐹)) |
| 32 | 10, 12 | mulg1 17548 |
. . . . . . . . . . . . 13
⊢
((1r‘𝐹) ∈ (Base‘𝐹) → (1(.g‘𝐹)(1r‘𝐹)) = (1r‘𝐹)) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ oField →
(1(.g‘𝐹)(1r‘𝐹)) = (1r‘𝐹)) |
| 34 | 30, 33 | breqtrrd 4681 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(1(.g‘𝐹)(1r‘𝐹))) |
| 35 | | ofldtos 29811 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) |
| 36 | | tospos 29658 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) |
| 37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ oField → 𝐹 ∈ Poset) |
| 38 | 37 | ad2antlr 763 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝐹 ∈ Poset) |
| 39 | | ringgrp 18552 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) |
| 40 | 9, 39 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ oField → 𝐹 ∈ Grp) |
| 41 | 40 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝐹 ∈ Grp) |
| 42 | 10, 13 | grpidcl 17450 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Grp →
(0g‘𝐹)
∈ (Base‘𝐹)) |
| 43 | 41, 42 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (0g‘𝐹) ∈ (Base‘𝐹)) |
| 44 | | grpmnd 17429 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ Grp → 𝐹 ∈ Mnd) |
| 45 | | mndmgm 17300 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ Mnd → 𝐹 ∈ Mgm) |
| 46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ Grp → 𝐹 ∈ Mgm) |
| 47 | 41, 46 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝐹 ∈ Mgm) |
| 48 | | simpll 790 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝑚 ∈ ℕ) |
| 49 | 31 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (1r‘𝐹) ∈ (Base‘𝐹)) |
| 50 | 10, 12 | mulgnncl 17556 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ Mgm ∧ 𝑚 ∈ ℕ ∧
(1r‘𝐹)
∈ (Base‘𝐹))
→ (𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹)) |
| 51 | 47, 48, 49, 50 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹)) |
| 52 | 48 | peano2nnd 11037 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (𝑚 + 1) ∈ ℕ) |
| 53 | 10, 12 | mulgnncl 17556 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ Mgm ∧ (𝑚 + 1) ∈ ℕ ∧
(1r‘𝐹)
∈ (Base‘𝐹))
→ ((𝑚 +
1)(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹)) |
| 54 | 47, 52, 49, 53 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹)) |
| 55 | 43, 51, 54 | 3jca 1242 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((0g‘𝐹) ∈ (Base‘𝐹) ∧ (𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹))) |
| 56 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) |
| 57 | | simplr 792 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝐹 ∈ oField) |
| 58 | | isofld 29802 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) |
| 59 | 58 | simprbi 480 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ oField → 𝐹 ∈ oRing) |
| 60 | | orngogrp 29801 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ oRing → 𝐹 ∈ oGrp) |
| 61 | 57, 59, 60 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝐹 ∈ oGrp) |
| 62 | 30 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (0g‘𝐹)(lt‘𝐹)(1r‘𝐹)) |
| 63 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢
(+g‘𝐹) = (+g‘𝐹) |
| 64 | 10, 29, 63 | ogrpaddlt 29718 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ oGrp ∧
((0g‘𝐹)
∈ (Base‘𝐹) ∧
(1r‘𝐹)
∈ (Base‘𝐹) ∧
(𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹)) ∧ (0g‘𝐹)(lt‘𝐹)(1r‘𝐹)) → ((0g‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))(lt‘𝐹)((1r‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) |
| 65 | 61, 43, 49, 51, 62, 64 | syl131anc 1339 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((0g‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))(lt‘𝐹)((1r‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) |
| 66 | 10, 63, 13 | grplid 17452 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ Grp ∧ (𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹)) →
((0g‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) = (𝑚(.g‘𝐹)(1r‘𝐹))) |
| 67 | 41, 51, 66 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((0g‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) = (𝑚(.g‘𝐹)(1r‘𝐹))) |
| 68 | 67 | eqcomd 2628 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (𝑚(.g‘𝐹)(1r‘𝐹)) = ((0g‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) |
| 69 | 10, 12, 63 | mulgnnp1 17549 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ℕ ∧
(1r‘𝐹)
∈ (Base‘𝐹))
→ ((𝑚 +
1)(.g‘𝐹)(1r‘𝐹)) = ((𝑚(.g‘𝐹)(1r‘𝐹))(+g‘𝐹)(1r‘𝐹))) |
| 70 | 48, 49, 69 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)) = ((𝑚(.g‘𝐹)(1r‘𝐹))(+g‘𝐹)(1r‘𝐹))) |
| 71 | | ringcmn 18581 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ Ring → 𝐹 ∈ CMnd) |
| 72 | 57, 9, 71 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → 𝐹 ∈ CMnd) |
| 73 | 10, 63 | cmncom 18209 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ CMnd ∧ (𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹) ∧
(1r‘𝐹)
∈ (Base‘𝐹))
→ ((𝑚(.g‘𝐹)(1r‘𝐹))(+g‘𝐹)(1r‘𝐹)) = ((1r‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) |
| 74 | 72, 51, 49, 73 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((𝑚(.g‘𝐹)(1r‘𝐹))(+g‘𝐹)(1r‘𝐹)) = ((1r‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) |
| 75 | 70, 74 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)) = ((1r‘𝐹)(+g‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)))) |
| 76 | 65, 68, 75 | 3brtr4d 4685 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (𝑚(.g‘𝐹)(1r‘𝐹))(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))) |
| 77 | 10, 29 | plttr 16970 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ Poset ∧
((0g‘𝐹)
∈ (Base‘𝐹) ∧
(𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹))) → (((0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)) ∧ (𝑚(.g‘𝐹)(1r‘𝐹))(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))) → (0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)))) |
| 78 | 77 | imp 445 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ Poset ∧
((0g‘𝐹)
∈ (Base‘𝐹) ∧
(𝑚(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹) ∧ ((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)) ∈ (Base‘𝐹))) ∧ ((0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)) ∧ (𝑚(.g‘𝐹)(1r‘𝐹))(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹)))) → (0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))) |
| 79 | 38, 55, 56, 76, 78 | syl22anc 1327 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ ∧ 𝐹 ∈ oField) ∧
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))) |
| 80 | 79 | exp31 630 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → (𝐹 ∈ oField →
((0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹)) → (0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))))) |
| 81 | 80 | a2d 29 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → ((𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑚(.g‘𝐹)(1r‘𝐹))) → (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)((𝑚 + 1)(.g‘𝐹)(1r‘𝐹))))) |
| 82 | 19, 22, 25, 28, 34, 81 | nnind 11038 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → (𝐹 ∈ oField →
(0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹)))) |
| 83 | 82 | impcom 446 |
. . . . . . . . 9
⊢ ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) →
(0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹))) |
| 84 | | fvex 6201 |
. . . . . . . . . . 11
⊢
(0g‘𝐹) ∈ V |
| 85 | | ovex 6678 |
. . . . . . . . . . 11
⊢ (𝑦(.g‘𝐹)(1r‘𝐹)) ∈ V |
| 86 | 29 | pltne 16962 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ oField ∧
(0g‘𝐹)
∈ V ∧ (𝑦(.g‘𝐹)(1r‘𝐹)) ∈ V) →
((0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹)) → (0g‘𝐹) ≠ (𝑦(.g‘𝐹)(1r‘𝐹)))) |
| 87 | 84, 85, 86 | mp3an23 1416 |
. . . . . . . . . 10
⊢ (𝐹 ∈ oField →
((0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹)) → (0g‘𝐹) ≠ (𝑦(.g‘𝐹)(1r‘𝐹)))) |
| 88 | 87 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) →
((0g‘𝐹)(lt‘𝐹)(𝑦(.g‘𝐹)(1r‘𝐹)) → (0g‘𝐹) ≠ (𝑦(.g‘𝐹)(1r‘𝐹)))) |
| 89 | 83, 88 | mpd 15 |
. . . . . . . 8
⊢ ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) →
(0g‘𝐹)
≠ (𝑦(.g‘𝐹)(1r‘𝐹))) |
| 90 | 89 | necomd 2849 |
. . . . . . 7
⊢ ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → (𝑦(.g‘𝐹)(1r‘𝐹)) ≠
(0g‘𝐹)) |
| 91 | 90 | neneqd 2799 |
. . . . . 6
⊢ ((𝐹 ∈ oField ∧ 𝑦 ∈ ℕ) → ¬
(𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)) |
| 92 | 91 | ralrimiva 2966 |
. . . . 5
⊢ (𝐹 ∈ oField →
∀𝑦 ∈ ℕ
¬ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)) |
| 93 | | rabeq0 3957 |
. . . . 5
⊢ ({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} = ∅ ↔
∀𝑦 ∈ ℕ
¬ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)) |
| 94 | 92, 93 | sylibr 224 |
. . . 4
⊢ (𝐹 ∈ oField → {𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} = ∅) |
| 95 | 94 | iftrued 4094 |
. . 3
⊢ (𝐹 ∈ oField → if({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)} = ∅, 0, inf({𝑦 ∈ ℕ ∣ (𝑦(.g‘𝐹)(1r‘𝐹)) = (0g‘𝐹)}, ℝ, < )) =
0) |
| 96 | 16, 95 | eqtrd 2656 |
. 2
⊢ (𝐹 ∈ oField →
((od‘𝐹)‘(1r‘𝐹)) = 0) |
| 97 | 4, 96 | syl5eqr 2670 |
1
⊢ (𝐹 ∈ oField →
(chr‘𝐹) =
0) |