| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plttr | Structured version Visualization version Unicode version | ||
| Description: The less-than relation is transitive. (psstr 3711 analog.) (Contributed by NM, 2-Dec-2011.) |
| Ref | Expression |
|---|---|
| pltnlt.b |
|
| pltnlt.s |
|
| Ref | Expression |
|---|---|
| plttr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. . . . . 6
| |
| 2 | pltnlt.s |
. . . . . 6
| |
| 3 | 1, 2 | pltle 16961 |
. . . . 5
|
| 4 | 3 | 3adant3r3 1276 |
. . . 4
|
| 5 | 1, 2 | pltle 16961 |
. . . . 5
|
| 6 | 5 | 3adant3r1 1274 |
. . . 4
|
| 7 | pltnlt.b |
. . . . 5
| |
| 8 | 7, 1 | postr 16953 |
. . . 4
|
| 9 | 4, 6, 8 | syl2and 500 |
. . 3
|
| 10 | 7, 2 | pltn2lp 16969 |
. . . . . 6
|
| 11 | 10 | 3adant3r3 1276 |
. . . . 5
|
| 12 | breq2 4657 |
. . . . . . 7
| |
| 13 | 12 | anbi2d 740 |
. . . . . 6
|
| 14 | 13 | notbid 308 |
. . . . 5
|
| 15 | 11, 14 | syl5ibcom 235 |
. . . 4
|
| 16 | 15 | necon2ad 2809 |
. . 3
|
| 17 | 9, 16 | jcad 555 |
. 2
|
| 18 | 1, 2 | pltval 16960 |
. . 3
|
| 19 | 18 | 3adant3r2 1275 |
. 2
|
| 20 | 17, 19 | sylibrd 249 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-preset 16928 df-poset 16946 df-plt 16958 |
| This theorem is referenced by: pltletr 16971 plelttr 16972 pospo 16973 archiabllem2c 29749 ofldchr 29814 hlhgt2 34675 hl0lt1N 34676 lhp0lt 35289 |
| Copyright terms: Public domain | W3C validator |