MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1frcl Structured version   Visualization version   Unicode version

Theorem ply1frcl 19683
Description: Reverse closure for the set of univariate polynomial functions. (Contributed by AV, 9-Sep-2019.)
Hypothesis
Ref Expression
ply1frcl.q  |-  Q  =  ran  ( S evalSub1  R )
Assertion
Ref Expression
ply1frcl  |-  ( X  e.  Q  ->  ( S  e.  _V  /\  R  e.  ~P ( Base `  S
) ) )

Proof of Theorem ply1frcl
Dummy variables  r 
b  s  x  y  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ne0i 3921 . . 3  |-  ( X  e.  ran  ( S evalSub1  R )  ->  ran  ( S evalSub1  R )  =/=  (/) )
2 ply1frcl.q . . 3  |-  Q  =  ran  ( S evalSub1  R )
31, 2eleq2s 2719 . 2  |-  ( X  e.  Q  ->  ran  ( S evalSub1  R )  =/=  (/) )
4 rneq 5351 . . . 4  |-  ( ( S evalSub1  R )  =  (/)  ->  ran  ( S evalSub1  R )  =  ran  (/) )
5 rn0 5377 . . . 4  |-  ran  (/)  =  (/)
64, 5syl6eq 2672 . . 3  |-  ( ( S evalSub1  R )  =  (/)  ->  ran  ( S evalSub1  R )  =  (/) )
76necon3i 2826 . 2  |-  ( ran  ( S evalSub1  R )  =/=  (/)  ->  ( S evalSub1  R )  =/=  (/) )
8 n0 3931 . . 3  |-  ( ( S evalSub1  R )  =/=  (/)  <->  E. e 
e  e.  ( S evalSub1  R ) )
9 df-evls1 19680 . . . . . . 7  |- evalSub1  =  ( s  e.  _V ,  r  e. 
~P ( Base `  s
)  |->  [_ ( Base `  s
)  /  b ]_ ( ( x  e.  ( b  ^m  (
b  ^m  1o )
)  |->  ( x  o.  ( y  e.  b 
|->  ( 1o  X.  {
y } ) ) ) )  o.  (
( 1o evalSub  s ) `  r ) ) )
109dmmpt2ssx 7235 . . . . . 6  |-  dom evalSub1  C_  U_ s  e.  _V  ( { s }  X.  ~P ( Base `  s ) )
11 elfvdm 6220 . . . . . . 7  |-  ( e  e.  ( evalSub1  `  <. S ,  R >. )  ->  <. S ,  R >.  e.  dom evalSub1  )
12 df-ov 6653 . . . . . . 7  |-  ( S evalSub1  R )  =  ( evalSub1  `  <. S ,  R >. )
1311, 12eleq2s 2719 . . . . . 6  |-  ( e  e.  ( S evalSub1  R )  ->  <. S ,  R >.  e.  dom evalSub1  )
1410, 13sseldi 3601 . . . . 5  |-  ( e  e.  ( S evalSub1  R )  ->  <. S ,  R >.  e.  U_ s  e. 
_V  ( { s }  X.  ~P ( Base `  s ) ) )
15 fveq2 6191 . . . . . . 7  |-  ( s  =  S  ->  ( Base `  s )  =  ( Base `  S
) )
1615pweqd 4163 . . . . . 6  |-  ( s  =  S  ->  ~P ( Base `  s )  =  ~P ( Base `  S
) )
1716opeliunxp2 5260 . . . . 5  |-  ( <. S ,  R >.  e. 
U_ s  e.  _V  ( { s }  X.  ~P ( Base `  s
) )  <->  ( S  e.  _V  /\  R  e. 
~P ( Base `  S
) ) )
1814, 17sylib 208 . . . 4  |-  ( e  e.  ( S evalSub1  R )  ->  ( S  e. 
_V  /\  R  e.  ~P ( Base `  S
) ) )
1918exlimiv 1858 . . 3  |-  ( E. e  e  e.  ( S evalSub1  R )  ->  ( S  e.  _V  /\  R  e.  ~P ( Base `  S
) ) )
208, 19sylbi 207 . 2  |-  ( ( S evalSub1  R )  =/=  (/)  ->  ( S  e.  _V  /\  R  e.  ~P ( Base `  S
) ) )
213, 7, 203syl 18 1  |-  ( X  e.  Q  ->  ( S  e.  _V  /\  R  e.  ~P ( Base `  S
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200   [_csb 3533   (/)c0 3915   ~Pcpw 4158   {csn 4177   <.cop 4183   U_ciun 4520    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115    o. ccom 5118   ` cfv 5888  (class class class)co 6650   1oc1o 7553    ^m cmap 7857   Basecbs 15857   evalSub ces 19504   evalSub1 ces1 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-evls1 19680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator