Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapjat1 Structured version   Visualization version   GIF version

Theorem pmapjat1 35139
Description: The projective map of the join of a lattice element and an atom. (Contributed by NM, 28-Jan-2012.)
Hypotheses
Ref Expression
pmapjat.b 𝐵 = (Base‘𝐾)
pmapjat.j = (join‘𝐾)
pmapjat.a 𝐴 = (Atoms‘𝐾)
pmapjat.m 𝑀 = (pmap‘𝐾)
pmapjat.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmapjat1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))

Proof of Theorem pmapjat1
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ HL)
2 pmapjat.b . . . . . . . 8 𝐵 = (Base‘𝐾)
3 pmapjat.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
42, 3atbase 34576 . . . . . . 7 (𝑄𝐴𝑄𝐵)
543ad2ant3 1084 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑄𝐵)
6 pmapjat.m . . . . . . 7 𝑀 = (pmap‘𝐾)
72, 3, 6pmapssat 35045 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐵) → (𝑀𝑄) ⊆ 𝐴)
81, 5, 7syl2anc 693 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑄) ⊆ 𝐴)
9 pmapjat.p . . . . . 6 + = (+𝑃𝐾)
103, 9padd02 35098 . . . . 5 ((𝐾 ∈ HL ∧ (𝑀𝑄) ⊆ 𝐴) → (∅ + (𝑀𝑄)) = (𝑀𝑄))
111, 8, 10syl2anc 693 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∅ + (𝑀𝑄)) = (𝑀𝑄))
1211adantr 481 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (∅ + (𝑀𝑄)) = (𝑀𝑄))
13 fveq2 6191 . . . . 5 (𝑋 = (0.‘𝐾) → (𝑀𝑋) = (𝑀‘(0.‘𝐾)))
14 hlatl 34647 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
15143ad2ant1 1082 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ AtLat)
16 eqid 2622 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
1716, 6pmap0 35051 . . . . . 6 (𝐾 ∈ AtLat → (𝑀‘(0.‘𝐾)) = ∅)
1815, 17syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(0.‘𝐾)) = ∅)
1913, 18sylan9eqr 2678 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑀𝑋) = ∅)
2019oveq1d 6665 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → ((𝑀𝑋) + (𝑀𝑄)) = (∅ + (𝑀𝑄)))
21 oveq1 6657 . . . . 5 (𝑋 = (0.‘𝐾) → (𝑋 𝑄) = ((0.‘𝐾) 𝑄))
22 hlol 34648 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
23223ad2ant1 1082 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ OL)
24 pmapjat.j . . . . . . 7 = (join‘𝐾)
252, 24, 16olj02 34513 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑄𝐵) → ((0.‘𝐾) 𝑄) = 𝑄)
2623, 5, 25syl2anc 693 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((0.‘𝐾) 𝑄) = 𝑄)
2721, 26sylan9eqr 2678 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑋 𝑄) = 𝑄)
2827fveq2d 6195 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) = (𝑀𝑄))
2912, 20, 283eqtr4rd 2667 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 = (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
30 simpll1 1100 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
3130adantr 481 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝐾 ∈ HL)
32 simpll2 1101 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → 𝑋𝐵)
3332adantr 481 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑋𝐵)
34 simplr 792 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑝𝐴)
35 simpll3 1102 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → 𝑄𝐴)
3635adantr 481 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑄𝐴)
3733, 34, 363jca 1242 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → (𝑋𝐵𝑝𝐴𝑄𝐴))
38 simpllr 799 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑋 ≠ (0.‘𝐾))
39 simpr 477 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → 𝑝(le‘𝐾)(𝑋 𝑄))
40 eqid 2622 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
412, 40, 24, 16, 3cvrat42 34730 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑝𝐴𝑄𝐴)) → ((𝑋 ≠ (0.‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
4241imp 445 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑝𝐴𝑄𝐴)) ∧ (𝑋 ≠ (0.‘𝐾) ∧ 𝑝(le‘𝐾)(𝑋 𝑄))) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄)))
4331, 37, 38, 39, 42syl22anc 1327 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) ∧ 𝑝(le‘𝐾)(𝑋 𝑄)) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄)))
4443ex 450 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → (𝑝(le‘𝐾)(𝑋 𝑄) → ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
452, 40, 3, 6elpmap 35044 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑞 ∈ (𝑀𝑋) ↔ (𝑞𝐴𝑞(le‘𝐾)𝑋)))
46453adant3 1081 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑞 ∈ (𝑀𝑋) ↔ (𝑞𝐴𝑞(le‘𝐾)𝑋)))
47 df-rex 2918 . . . . . . . . . . . . 13 (∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ ∃𝑟(𝑟 ∈ (𝑀𝑄) ∧ 𝑝(le‘𝐾)(𝑞 𝑟)))
483, 6elpmapat 35050 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑟 ∈ (𝑀𝑄) ↔ 𝑟 = 𝑄))
49483adant2 1080 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑟 ∈ (𝑀𝑄) ↔ 𝑟 = 𝑄))
5049anbi1d 741 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑟 ∈ (𝑀𝑄) ∧ 𝑝(le‘𝐾)(𝑞 𝑟)) ↔ (𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟))))
5150exbidv 1850 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟(𝑟 ∈ (𝑀𝑄) ∧ 𝑝(le‘𝐾)(𝑞 𝑟)) ↔ ∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟))))
5247, 51syl5rbb 273 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟)) ↔ ∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)))
53 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑟 = 𝑄 → (𝑞 𝑟) = (𝑞 𝑄))
5453breq2d 4665 . . . . . . . . . . . . . 14 (𝑟 = 𝑄 → (𝑝(le‘𝐾)(𝑞 𝑟) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
5554ceqsexgv 3335 . . . . . . . . . . . . 13 (𝑄𝐴 → (∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟)) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
56553ad2ant3 1084 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟(𝑟 = 𝑄𝑝(le‘𝐾)(𝑞 𝑟)) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
5752, 56bitr3d 270 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ 𝑝(le‘𝐾)(𝑞 𝑄)))
5846, 57anbi12d 747 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑞 ∈ (𝑀𝑋) ∧ ∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)) ↔ ((𝑞𝐴𝑞(le‘𝐾)𝑋) ∧ 𝑝(le‘𝐾)(𝑞 𝑄))))
59 anass 681 . . . . . . . . . 10 (((𝑞𝐴𝑞(le‘𝐾)𝑋) ∧ 𝑝(le‘𝐾)(𝑞 𝑄)) ↔ (𝑞𝐴 ∧ (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
6058, 59syl6bb 276 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑞 ∈ (𝑀𝑋) ∧ ∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)) ↔ (𝑞𝐴 ∧ (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄)))))
6160rexbidv2 3048 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
6261ad2antrr 762 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → (∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟) ↔ ∃𝑞𝐴 (𝑞(le‘𝐾)𝑋𝑝(le‘𝐾)(𝑞 𝑄))))
6344, 62sylibrd 249 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) ∧ 𝑝𝐴) → (𝑝(le‘𝐾)(𝑋 𝑄) → ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟)))
6463imdistanda 729 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → ((𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄)) → (𝑝𝐴 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟))))
65 hllat 34650 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Lat)
66653ad2ant1 1082 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝐾 ∈ Lat)
67 simp2 1062 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑋𝐵)
682, 24latjcl 17051 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → (𝑋 𝑄) ∈ 𝐵)
6966, 67, 5, 68syl3anc 1326 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑋 𝑄) ∈ 𝐵)
702, 40, 3, 6elpmap 35044 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋 𝑄) ∈ 𝐵) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) ↔ (𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄))))
711, 69, 70syl2anc 693 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) ↔ (𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄))))
7271adantr 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) ↔ (𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑄))))
732, 3, 6pmapssat 35045 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ 𝐴)
74733adant3 1081 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑋) ⊆ 𝐴)
7566, 74, 83jca 1242 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ 𝐴 ∧ (𝑀𝑄) ⊆ 𝐴))
7675adantr 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ 𝐴 ∧ (𝑀𝑄) ⊆ 𝐴))
772, 16, 6pmapeq0 35052 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑀𝑋) = ∅ ↔ 𝑋 = (0.‘𝐾)))
78773adant3 1081 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑋) = ∅ ↔ 𝑋 = (0.‘𝐾)))
7978necon3bid 2838 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑋) ≠ ∅ ↔ 𝑋 ≠ (0.‘𝐾)))
8079biimpar 502 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀𝑋) ≠ ∅)
81 simp3 1063 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑄𝐴)
8216, 3atn0 34595 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑄𝐴) → 𝑄 ≠ (0.‘𝐾))
8315, 81, 82syl2anc 693 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → 𝑄 ≠ (0.‘𝐾))
842, 16, 6pmapeq0 35052 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐵) → ((𝑀𝑄) = ∅ ↔ 𝑄 = (0.‘𝐾)))
851, 5, 84syl2anc 693 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑄) = ∅ ↔ 𝑄 = (0.‘𝐾)))
8685necon3bid 2838 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑄) ≠ ∅ ↔ 𝑄 ≠ (0.‘𝐾)))
8783, 86mpbird 247 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀𝑄) ≠ ∅)
8887adantr 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀𝑄) ≠ ∅)
8940, 24, 3, 9elpaddn0 35086 . . . . . 6 (((𝐾 ∈ Lat ∧ (𝑀𝑋) ⊆ 𝐴 ∧ (𝑀𝑄) ⊆ 𝐴) ∧ ((𝑀𝑋) ≠ ∅ ∧ (𝑀𝑄) ≠ ∅)) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑄)) ↔ (𝑝𝐴 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟))))
9076, 80, 88, 89syl12anc 1324 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑝 ∈ ((𝑀𝑋) + (𝑀𝑄)) ↔ (𝑝𝐴 ∧ ∃𝑞 ∈ (𝑀𝑋)∃𝑟 ∈ (𝑀𝑄)𝑝(le‘𝐾)(𝑞 𝑟))))
9164, 72, 903imtr4d 283 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑝 ∈ (𝑀‘(𝑋 𝑄)) → 𝑝 ∈ ((𝑀𝑋) + (𝑀𝑄))))
9291ssrdv 3609 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) ⊆ ((𝑀𝑋) + (𝑀𝑄)))
932, 24, 6, 9pmapjoin 35138 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → ((𝑀𝑋) + (𝑀𝑄)) ⊆ (𝑀‘(𝑋 𝑄)))
9466, 67, 5, 93syl3anc 1326 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → ((𝑀𝑋) + (𝑀𝑄)) ⊆ (𝑀‘(𝑋 𝑄)))
9594adantr 481 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → ((𝑀𝑋) + (𝑀𝑄)) ⊆ (𝑀‘(𝑋 𝑄)))
9692, 95eqssd 3620 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) ∧ 𝑋 ≠ (0.‘𝐾)) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
9729, 96pm2.61dane 2881 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wrex 2913  wss 3574  c0 3915   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  joincjn 16944  0.cp0 17037  Latclat 17045  OLcol 34461  Atomscatm 34550  AtLatcal 34551  HLchlt 34637  pmapcpmap 34783  +𝑃cpadd 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-pmap 34790  df-padd 35082
This theorem is referenced by:  pmapjat2  35140  pmapjlln1  35141  atmod1i2  35145  paddatclN  35235
  Copyright terms: Public domain W3C validator