MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfv3 Structured version   Visualization version   GIF version

Theorem pmtrprfv3 17874
Description: In a transposition of two given points, all other points are mapped to themselves. (Contributed by AV, 17-Mar-2019.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrprfv3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = 𝑍)

Proof of Theorem pmtrprfv3
StepHypRef Expression
1 simp1 1061 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝐷𝑉)
2 simp1 1061 . . . . 5 ((𝑋𝐷𝑌𝐷𝑍𝐷) → 𝑋𝐷)
323ad2ant2 1083 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑋𝐷)
4 simp22 1095 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑌𝐷)
5 prssi 4353 . . . 4 ((𝑋𝐷𝑌𝐷) → {𝑋, 𝑌} ⊆ 𝐷)
63, 4, 5syl2anc 693 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ⊆ 𝐷)
7 pr2nelem 8827 . . . . . . . . 9 ((𝑋𝐷𝑌𝐷𝑋𝑌) → {𝑋, 𝑌} ≈ 2𝑜)
873expia 1267 . . . . . . . 8 ((𝑋𝐷𝑌𝐷) → (𝑋𝑌 → {𝑋, 𝑌} ≈ 2𝑜))
983adant3 1081 . . . . . . 7 ((𝑋𝐷𝑌𝐷𝑍𝐷) → (𝑋𝑌 → {𝑋, 𝑌} ≈ 2𝑜))
109com12 32 . . . . . 6 (𝑋𝑌 → ((𝑋𝐷𝑌𝐷𝑍𝐷) → {𝑋, 𝑌} ≈ 2𝑜))
11103ad2ant1 1082 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → ((𝑋𝐷𝑌𝐷𝑍𝐷) → {𝑋, 𝑌} ≈ 2𝑜))
1211impcom 446 . . . 4 (((𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ≈ 2𝑜)
13123adant1 1079 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {𝑋, 𝑌} ≈ 2𝑜)
14 simp23 1096 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝐷)
15 pmtrfval.t . . . 4 𝑇 = (pmTrsp‘𝐷)
1615pmtrfv 17872 . . 3 (((𝐷𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐷 ∧ {𝑋, 𝑌} ≈ 2𝑜) ∧ 𝑍𝐷) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = if(𝑍 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑍}), 𝑍))
171, 6, 13, 14, 16syl31anc 1329 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = if(𝑍 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑍}), 𝑍))
18 necom 2847 . . . . . . 7 (𝑋𝑍𝑍𝑋)
1918biimpi 206 . . . . . 6 (𝑋𝑍𝑍𝑋)
20193ad2ant2 1083 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑍𝑋)
21203ad2ant3 1084 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝑋)
22 necom 2847 . . . . . . 7 (𝑌𝑍𝑍𝑌)
2322biimpi 206 . . . . . 6 (𝑌𝑍𝑍𝑌)
24233ad2ant3 1084 . . . . 5 ((𝑋𝑌𝑋𝑍𝑌𝑍) → 𝑍𝑌)
25243ad2ant3 1084 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → 𝑍𝑌)
2621, 25nelprd 4203 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ¬ 𝑍 ∈ {𝑋, 𝑌})
2726iffalsed 4097 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → if(𝑍 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑍}), 𝑍) = 𝑍)
2817, 27eqtrd 2656 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝑇‘{𝑋, 𝑌})‘𝑍) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cdif 3571  wss 3574  ifcif 4086  {csn 4177  {cpr 4179   cuni 4436   class class class wbr 4653  cfv 5888  2𝑜c2o 7554  cen 7952  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pmtr 17862
This theorem is referenced by:  pmtr3ncomlem1  17893  psgnfzto1stlem  29850
  Copyright terms: Public domain W3C validator