MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfv3 Structured version   Visualization version   Unicode version

Theorem pmtrprfv3 17874
Description: In a transposition of two given points, all other points are mapped to themselves. (Contributed by AV, 17-Mar-2019.)
Hypothesis
Ref Expression
pmtrfval.t  |-  T  =  (pmTrsp `  D )
Assertion
Ref Expression
pmtrprfv3  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  (
( T `  { X ,  Y }
) `  Z )  =  Z )

Proof of Theorem pmtrprfv3
StepHypRef Expression
1 simp1 1061 . . 3  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  D  e.  V )
2 simp1 1061 . . . . 5  |-  ( ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D )  ->  X  e.  D )
323ad2ant2 1083 . . . 4  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  X  e.  D )
4 simp22 1095 . . . 4  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  Y  e.  D )
5 prssi 4353 . . . 4  |-  ( ( X  e.  D  /\  Y  e.  D )  ->  { X ,  Y }  C_  D )
63, 4, 5syl2anc 693 . . 3  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  { X ,  Y }  C_  D
)
7 pr2nelem 8827 . . . . . . . . 9  |-  ( ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y )  ->  { X ,  Y }  ~~  2o )
873expia 1267 . . . . . . . 8  |-  ( ( X  e.  D  /\  Y  e.  D )  ->  ( X  =/=  Y  ->  { X ,  Y }  ~~  2o ) )
983adant3 1081 . . . . . . 7  |-  ( ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D )  ->  ( X  =/=  Y  ->  { X ,  Y }  ~~  2o ) )
109com12 32 . . . . . 6  |-  ( X  =/=  Y  ->  (
( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  ->  { X ,  Y }  ~~  2o ) )
11103ad2ant1 1082 . . . . 5  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  (
( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  ->  { X ,  Y }  ~~  2o ) )
1211impcom 446 . . . 4  |-  ( ( ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  { X ,  Y }  ~~  2o )
13123adant1 1079 . . 3  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  { X ,  Y }  ~~  2o )
14 simp23 1096 . . 3  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  Z  e.  D )
15 pmtrfval.t . . . 4  |-  T  =  (pmTrsp `  D )
1615pmtrfv 17872 . . 3  |-  ( ( ( D  e.  V  /\  { X ,  Y }  C_  D  /\  { X ,  Y }  ~~  2o )  /\  Z  e.  D )  ->  (
( T `  { X ,  Y }
) `  Z )  =  if ( Z  e. 
{ X ,  Y } ,  U. ( { X ,  Y }  \  { Z } ) ,  Z ) )
171, 6, 13, 14, 16syl31anc 1329 . 2  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  (
( T `  { X ,  Y }
) `  Z )  =  if ( Z  e. 
{ X ,  Y } ,  U. ( { X ,  Y }  \  { Z } ) ,  Z ) )
18 necom 2847 . . . . . . 7  |-  ( X  =/=  Z  <->  Z  =/=  X )
1918biimpi 206 . . . . . 6  |-  ( X  =/=  Z  ->  Z  =/=  X )
20193ad2ant2 1083 . . . . 5  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  Z  =/=  X )
21203ad2ant3 1084 . . . 4  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  Z  =/=  X )
22 necom 2847 . . . . . . 7  |-  ( Y  =/=  Z  <->  Z  =/=  Y )
2322biimpi 206 . . . . . 6  |-  ( Y  =/=  Z  ->  Z  =/=  Y )
24233ad2ant3 1084 . . . . 5  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  Z  =/=  Y )
25243ad2ant3 1084 . . . 4  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  Z  =/=  Y )
2621, 25nelprd 4203 . . 3  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  -.  Z  e.  { X ,  Y } )
2726iffalsed 4097 . 2  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  if ( Z  e.  { X ,  Y } ,  U. ( { X ,  Y }  \  { Z }
) ,  Z )  =  Z )
2817, 27eqtrd 2656 1  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  (
( T `  { X ,  Y }
) `  Z )  =  Z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571    C_ wss 3574   ifcif 4086   {csn 4177   {cpr 4179   U.cuni 4436   class class class wbr 4653   ` cfv 5888   2oc2o 7554    ~~ cen 7952  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pmtr 17862
This theorem is referenced by:  pmtr3ncomlem1  17893  psgnfzto1stlem  29850
  Copyright terms: Public domain W3C validator