MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcn Structured version   Visualization version   GIF version

Theorem qtopcn 21517
Description: Universal property of a quotient map. (Contributed by Mario Carneiro, 23-Mar-2015.)
Assertion
Ref Expression
qtopcn (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺𝐹) ∈ (𝐽 Cn 𝐾)))

Proof of Theorem qtopcn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplll 798 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → 𝐽 ∈ (TopOn‘𝑋))
2 simplrl 800 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → 𝐹:𝑋onto𝑌)
3 elqtop3 21506 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ((𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((𝐺𝑥) ⊆ 𝑌 ∧ (𝐹 “ (𝐺𝑥)) ∈ 𝐽)))
41, 2, 3syl2anc 693 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → ((𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((𝐺𝑥) ⊆ 𝑌 ∧ (𝐹 “ (𝐺𝑥)) ∈ 𝐽)))
5 cnvimass 5485 . . . . . . . 8 (𝐺𝑥) ⊆ dom 𝐺
6 simplrr 801 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → 𝐺:𝑌𝑍)
7 fdm 6051 . . . . . . . . 9 (𝐺:𝑌𝑍 → dom 𝐺 = 𝑌)
86, 7syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → dom 𝐺 = 𝑌)
95, 8syl5sseq 3653 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → (𝐺𝑥) ⊆ 𝑌)
109biantrurd 529 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → ((𝐹 “ (𝐺𝑥)) ∈ 𝐽 ↔ ((𝐺𝑥) ⊆ 𝑌 ∧ (𝐹 “ (𝐺𝑥)) ∈ 𝐽)))
114, 10bitr4d 271 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → ((𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ (𝐹 “ (𝐺𝑥)) ∈ 𝐽))
12 cnvco 5308 . . . . . . . 8 (𝐺𝐹) = (𝐹𝐺)
1312imaeq1i 5463 . . . . . . 7 ((𝐺𝐹) “ 𝑥) = ((𝐹𝐺) “ 𝑥)
14 imaco 5640 . . . . . . 7 ((𝐹𝐺) “ 𝑥) = (𝐹 “ (𝐺𝑥))
1513, 14eqtri 2644 . . . . . 6 ((𝐺𝐹) “ 𝑥) = (𝐹 “ (𝐺𝑥))
1615eleq1i 2692 . . . . 5 (((𝐺𝐹) “ 𝑥) ∈ 𝐽 ↔ (𝐹 “ (𝐺𝑥)) ∈ 𝐽)
1711, 16syl6bbr 278 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → ((𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((𝐺𝐹) “ 𝑥) ∈ 𝐽))
1817ralbidva 2985 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽))
19 simprr 796 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → 𝐺:𝑌𝑍)
2019biantrurd 529 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ (𝐺:𝑌𝑍 ∧ ∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹))))
21 fof 6115 . . . . . 6 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
2221ad2antrl 764 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → 𝐹:𝑋𝑌)
23 fco 6058 . . . . 5 ((𝐺:𝑌𝑍𝐹:𝑋𝑌) → (𝐺𝐹):𝑋𝑍)
2419, 22, 23syl2anc 693 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐺𝐹):𝑋𝑍)
2524biantrurd 529 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽 ↔ ((𝐺𝐹):𝑋𝑍 ∧ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
2618, 20, 253bitr3d 298 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → ((𝐺:𝑌𝑍 ∧ ∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹)) ↔ ((𝐺𝐹):𝑋𝑍 ∧ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
27 qtoptopon 21507 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
2827ad2ant2r 783 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
29 simplr 792 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → 𝐾 ∈ (TopOn‘𝑍))
30 iscn 21039 . . 3 (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ 𝐾 ∈ (TopOn‘𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺:𝑌𝑍 ∧ ∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹))))
3128, 29, 30syl2anc 693 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺:𝑌𝑍 ∧ ∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹))))
32 iscn 21039 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) → ((𝐺𝐹) ∈ (𝐽 Cn 𝐾) ↔ ((𝐺𝐹):𝑋𝑍 ∧ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
3332adantr 481 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → ((𝐺𝐹) ∈ (𝐽 Cn 𝐾) ↔ ((𝐺𝐹):𝑋𝑍 ∧ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
3426, 31, 333bitr4d 300 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺𝐹) ∈ (𝐽 Cn 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574  ccnv 5113  dom cdm 5114  cima 5117  ccom 5118  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650   qTop cqtop 16163  TopOnctopon 20715   Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-qtop 16167  df-top 20699  df-topon 20716  df-cn 21031
This theorem is referenced by:  qtopeu  21519
  Copyright terms: Public domain W3C validator