MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcld Structured version   Visualization version   GIF version

Theorem qtopcld 21516
Description: The property of being a closed set in the quotient topology. (Contributed by Mario Carneiro, 24-Mar-2015.)
Assertion
Ref Expression
qtopcld ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐴 ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ (Clsd‘𝐽))))

Proof of Theorem qtopcld
StepHypRef Expression
1 qtoptopon 21507 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
2 topontop 20718 . . 3 ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → (𝐽 qTop 𝐹) ∈ Top)
3 eqid 2622 . . . 4 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
43iscld 20831 . . 3 ((𝐽 qTop 𝐹) ∈ Top → (𝐴 ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ (𝐴 (𝐽 qTop 𝐹) ∧ ( (𝐽 qTop 𝐹) ∖ 𝐴) ∈ (𝐽 qTop 𝐹))))
51, 2, 43syl 18 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐴 ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ (𝐴 (𝐽 qTop 𝐹) ∧ ( (𝐽 qTop 𝐹) ∖ 𝐴) ∈ (𝐽 qTop 𝐹))))
6 toponuni 20719 . . . . 5 ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → 𝑌 = (𝐽 qTop 𝐹))
71, 6syl 17 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
87sseq2d 3633 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐴𝑌𝐴 (𝐽 qTop 𝐹)))
97difeq1d 3727 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝑌𝐴) = ( (𝐽 qTop 𝐹) ∖ 𝐴))
109eleq1d 2686 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ((𝑌𝐴) ∈ (𝐽 qTop 𝐹) ↔ ( (𝐽 qTop 𝐹) ∖ 𝐴) ∈ (𝐽 qTop 𝐹)))
118, 10anbi12d 747 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ((𝐴𝑌 ∧ (𝑌𝐴) ∈ (𝐽 qTop 𝐹)) ↔ (𝐴 (𝐽 qTop 𝐹) ∧ ( (𝐽 qTop 𝐹) ∖ 𝐴) ∈ (𝐽 qTop 𝐹))))
12 elqtop3 21506 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ((𝑌𝐴) ∈ (𝐽 qTop 𝐹) ↔ ((𝑌𝐴) ⊆ 𝑌 ∧ (𝐹 “ (𝑌𝐴)) ∈ 𝐽)))
1312adantr 481 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → ((𝑌𝐴) ∈ (𝐽 qTop 𝐹) ↔ ((𝑌𝐴) ⊆ 𝑌 ∧ (𝐹 “ (𝑌𝐴)) ∈ 𝐽)))
14 difss 3737 . . . . . 6 (𝑌𝐴) ⊆ 𝑌
1514biantrur 527 . . . . 5 ((𝐹 “ (𝑌𝐴)) ∈ 𝐽 ↔ ((𝑌𝐴) ⊆ 𝑌 ∧ (𝐹 “ (𝑌𝐴)) ∈ 𝐽))
16 fofun 6116 . . . . . . . . . 10 (𝐹:𝑋onto𝑌 → Fun 𝐹)
1716ad2antlr 763 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → Fun 𝐹)
18 funcnvcnv 5956 . . . . . . . . 9 (Fun 𝐹 → Fun 𝐹)
19 imadif 5973 . . . . . . . . 9 (Fun 𝐹 → (𝐹 “ (𝑌𝐴)) = ((𝐹𝑌) ∖ (𝐹𝐴)))
2017, 18, 193syl 18 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (𝐹 “ (𝑌𝐴)) = ((𝐹𝑌) ∖ (𝐹𝐴)))
21 fof 6115 . . . . . . . . . . . 12 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
22 fimacnv 6347 . . . . . . . . . . . 12 (𝐹:𝑋𝑌 → (𝐹𝑌) = 𝑋)
2321, 22syl 17 . . . . . . . . . . 11 (𝐹:𝑋onto𝑌 → (𝐹𝑌) = 𝑋)
2423ad2antlr 763 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (𝐹𝑌) = 𝑋)
25 toponuni 20719 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2625ad2antrr 762 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → 𝑋 = 𝐽)
2724, 26eqtrd 2656 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (𝐹𝑌) = 𝐽)
2827difeq1d 3727 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → ((𝐹𝑌) ∖ (𝐹𝐴)) = ( 𝐽 ∖ (𝐹𝐴)))
2920, 28eqtrd 2656 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (𝐹 “ (𝑌𝐴)) = ( 𝐽 ∖ (𝐹𝐴)))
3029eleq1d 2686 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → ((𝐹 “ (𝑌𝐴)) ∈ 𝐽 ↔ ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽))
31 topontop 20718 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3231ad2antrr 762 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → 𝐽 ∈ Top)
33 cnvimass 5485 . . . . . . . . 9 (𝐹𝐴) ⊆ dom 𝐹
34 fofn 6117 . . . . . . . . . . 11 (𝐹:𝑋onto𝑌𝐹 Fn 𝑋)
35 fndm 5990 . . . . . . . . . . 11 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
3634, 35syl 17 . . . . . . . . . 10 (𝐹:𝑋onto𝑌 → dom 𝐹 = 𝑋)
3736ad2antlr 763 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → dom 𝐹 = 𝑋)
3833, 37syl5sseq 3653 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (𝐹𝐴) ⊆ 𝑋)
3938, 26sseqtrd 3641 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (𝐹𝐴) ⊆ 𝐽)
40 eqid 2622 . . . . . . . 8 𝐽 = 𝐽
4140iscld2 20832 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝐹𝐴) ⊆ 𝐽) → ((𝐹𝐴) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽))
4232, 39, 41syl2anc 693 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → ((𝐹𝐴) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽))
4330, 42bitr4d 271 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → ((𝐹 “ (𝑌𝐴)) ∈ 𝐽 ↔ (𝐹𝐴) ∈ (Clsd‘𝐽)))
4415, 43syl5bbr 274 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (((𝑌𝐴) ⊆ 𝑌 ∧ (𝐹 “ (𝑌𝐴)) ∈ 𝐽) ↔ (𝐹𝐴) ∈ (Clsd‘𝐽)))
4513, 44bitrd 268 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → ((𝑌𝐴) ∈ (𝐽 qTop 𝐹) ↔ (𝐹𝐴) ∈ (Clsd‘𝐽)))
4645pm5.32da 673 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ((𝐴𝑌 ∧ (𝑌𝐴) ∈ (𝐽 qTop 𝐹)) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ (Clsd‘𝐽))))
475, 11, 463bitr2d 296 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐴 ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ (Clsd‘𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  cdif 3571  wss 3574   cuni 4436  ccnv 5113  dom cdm 5114  cima 5117  Fun wfun 5882   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650   qTop cqtop 16163  Topctop 20698  TopOnctopon 20715  Clsdccld 20820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-qtop 16167  df-top 20699  df-topon 20716  df-cld 20823
This theorem is referenced by:  qtoprest  21520  kqcld  21538  qustgphaus  21926  qtopt1  29902
  Copyright terms: Public domain W3C validator