Proof of Theorem r1pw
| Step | Hyp | Ref
| Expression |
| 1 | | rankpwi 8686 |
. . . . . 6
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘𝒫 𝐴) =
suc (rank‘𝐴)) |
| 2 | 1 | eleq1d 2686 |
. . . . 5
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
((rank‘𝒫 𝐴)
∈ suc 𝐵 ↔ suc
(rank‘𝐴) ∈ suc
𝐵)) |
| 3 | | eloni 5733 |
. . . . . . 7
⊢ (𝐵 ∈ On → Ord 𝐵) |
| 4 | | ordsucelsuc 7022 |
. . . . . . 7
⊢ (Ord
𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ suc 𝐵)) |
| 5 | 3, 4 | syl 17 |
. . . . . 6
⊢ (𝐵 ∈ On →
((rank‘𝐴) ∈
𝐵 ↔ suc
(rank‘𝐴) ∈ suc
𝐵)) |
| 6 | 5 | bicomd 213 |
. . . . 5
⊢ (𝐵 ∈ On → (suc
(rank‘𝐴) ∈ suc
𝐵 ↔ (rank‘𝐴) ∈ 𝐵)) |
| 7 | 2, 6 | sylan9bb 736 |
. . . 4
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ On) →
((rank‘𝒫 𝐴)
∈ suc 𝐵 ↔
(rank‘𝐴) ∈ 𝐵)) |
| 8 | | pwwf 8670 |
. . . . . 6
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫
𝐴 ∈ ∪ (𝑅1 “ On)) |
| 9 | 8 | biimpi 206 |
. . . . 5
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫
𝐴 ∈ ∪ (𝑅1 “ On)) |
| 10 | | suceloni 7013 |
. . . . . 6
⊢ (𝐵 ∈ On → suc 𝐵 ∈ On) |
| 11 | | r1fnon 8630 |
. . . . . . 7
⊢
𝑅1 Fn On |
| 12 | | fndm 5990 |
. . . . . . 7
⊢
(𝑅1 Fn On → dom 𝑅1 =
On) |
| 13 | 11, 12 | ax-mp 5 |
. . . . . 6
⊢ dom
𝑅1 = On |
| 14 | 10, 13 | syl6eleqr 2712 |
. . . . 5
⊢ (𝐵 ∈ On → suc 𝐵 ∈ dom
𝑅1) |
| 15 | | rankr1ag 8665 |
. . . . 5
⊢
((𝒫 𝐴 ∈
∪ (𝑅1 “ On) ∧ suc 𝐵 ∈ dom
𝑅1) → (𝒫 𝐴 ∈ (𝑅1‘suc
𝐵) ↔
(rank‘𝒫 𝐴)
∈ suc 𝐵)) |
| 16 | 9, 14, 15 | syl2an 494 |
. . . 4
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝒫
𝐴 ∈
(𝑅1‘suc 𝐵) ↔ (rank‘𝒫 𝐴) ∈ suc 𝐵)) |
| 17 | 13 | eleq2i 2693 |
. . . . 5
⊢ (𝐵 ∈ dom
𝑅1 ↔ 𝐵 ∈ On) |
| 18 | | rankr1ag 8665 |
. . . . 5
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom
𝑅1) → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) |
| 19 | 17, 18 | sylan2br 493 |
. . . 4
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝐴 ∈
(𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) |
| 20 | 7, 16, 19 | 3bitr4rd 301 |
. . 3
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ On) → (𝐴 ∈
(𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc
𝐵))) |
| 21 | 20 | ex 450 |
. 2
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝐵 ∈ On → (𝐴 ∈
(𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc
𝐵)))) |
| 22 | | r1elwf 8659 |
. . . 4
⊢ (𝐴 ∈
(𝑅1‘𝐵) → 𝐴 ∈ ∪
(𝑅1 “ On)) |
| 23 | | r1elwf 8659 |
. . . . . 6
⊢
(𝒫 𝐴 ∈
(𝑅1‘suc 𝐵) → 𝒫 𝐴 ∈ ∪
(𝑅1 “ On)) |
| 24 | | r1elssi 8668 |
. . . . . 6
⊢
(𝒫 𝐴 ∈
∪ (𝑅1 “ On) →
𝒫 𝐴 ⊆ ∪ (𝑅1 “ On)) |
| 25 | 23, 24 | syl 17 |
. . . . 5
⊢
(𝒫 𝐴 ∈
(𝑅1‘suc 𝐵) → 𝒫 𝐴 ⊆ ∪
(𝑅1 “ On)) |
| 26 | | ssid 3624 |
. . . . . 6
⊢ 𝐴 ⊆ 𝐴 |
| 27 | | pwexr 6974 |
. . . . . . 7
⊢
(𝒫 𝐴 ∈
(𝑅1‘suc 𝐵) → 𝐴 ∈ V) |
| 28 | | elpwg 4166 |
. . . . . . 7
⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
| 29 | 27, 28 | syl 17 |
. . . . . 6
⊢
(𝒫 𝐴 ∈
(𝑅1‘suc 𝐵) → (𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
| 30 | 26, 29 | mpbiri 248 |
. . . . 5
⊢
(𝒫 𝐴 ∈
(𝑅1‘suc 𝐵) → 𝐴 ∈ 𝒫 𝐴) |
| 31 | 25, 30 | sseldd 3604 |
. . . 4
⊢
(𝒫 𝐴 ∈
(𝑅1‘suc 𝐵) → 𝐴 ∈ ∪
(𝑅1 “ On)) |
| 32 | 22, 31 | pm5.21ni 367 |
. . 3
⊢ (¬
𝐴 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈
(𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc
𝐵))) |
| 33 | 32 | a1d 25 |
. 2
⊢ (¬
𝐴 ∈ ∪ (𝑅1 “ On) → (𝐵 ∈ On → (𝐴 ∈
(𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc
𝐵)))) |
| 34 | 21, 33 | pm2.61i 176 |
1
⊢ (𝐵 ∈ On → (𝐴 ∈
(𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc
𝐵))) |