MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ranklim Structured version   Visualization version   GIF version

Theorem ranklim 8707
Description: The rank of a set belongs to a limit ordinal iff the rank of its power set does. (Contributed by NM, 18-Sep-2006.)
Assertion
Ref Expression
ranklim (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))

Proof of Theorem ranklim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limsuc 7049 . . . 4 (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
21adantl 482 . . 3 ((𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
3 pweq 4161 . . . . . . . 8 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
43fveq2d 6195 . . . . . . 7 (𝑥 = 𝐴 → (rank‘𝒫 𝑥) = (rank‘𝒫 𝐴))
5 fveq2 6191 . . . . . . . 8 (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴))
6 suceq 5790 . . . . . . . 8 ((rank‘𝑥) = (rank‘𝐴) → suc (rank‘𝑥) = suc (rank‘𝐴))
75, 6syl 17 . . . . . . 7 (𝑥 = 𝐴 → suc (rank‘𝑥) = suc (rank‘𝐴))
84, 7eqeq12d 2637 . . . . . 6 (𝑥 = 𝐴 → ((rank‘𝒫 𝑥) = suc (rank‘𝑥) ↔ (rank‘𝒫 𝐴) = suc (rank‘𝐴)))
9 vex 3203 . . . . . . 7 𝑥 ∈ V
109rankpw 8706 . . . . . 6 (rank‘𝒫 𝑥) = suc (rank‘𝑥)
118, 10vtoclg 3266 . . . . 5 (𝐴 ∈ V → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
1211eleq1d 2686 . . . 4 (𝐴 ∈ V → ((rank‘𝒫 𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
1312adantr 481 . . 3 ((𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝒫 𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
142, 13bitr4d 271 . 2 ((𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
15 fvprc 6185 . . . . 5 𝐴 ∈ V → (rank‘𝐴) = ∅)
16 pwexb 6975 . . . . . 6 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
17 fvprc 6185 . . . . . 6 (¬ 𝒫 𝐴 ∈ V → (rank‘𝒫 𝐴) = ∅)
1816, 17sylnbi 320 . . . . 5 𝐴 ∈ V → (rank‘𝒫 𝐴) = ∅)
1915, 18eqtr4d 2659 . . . 4 𝐴 ∈ V → (rank‘𝐴) = (rank‘𝒫 𝐴))
2019eleq1d 2686 . . 3 𝐴 ∈ V → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
2120adantr 481 . 2 ((¬ 𝐴 ∈ V ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
2214, 21pm2.61ian 831 1 (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  𝒫 cpw 4158  Lim wlim 5724  suc csuc 5725  cfv 5888  rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627  df-rank 8628
This theorem is referenced by:  rankxplim  8742
  Copyright terms: Public domain W3C validator