MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucelsuc Structured version   Visualization version   GIF version

Theorem ordsucelsuc 7022
Description: Membership is inherited by successors. Generalization of Exercise 9 of [TakeutiZaring] p. 42. (Contributed by NM, 22-Jun-1998.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ordsucelsuc (Ord 𝐵 → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))

Proof of Theorem ordsucelsuc
StepHypRef Expression
1 simpl 473 . . 3 ((Ord 𝐵𝐴𝐵) → Ord 𝐵)
2 ordelord 5745 . . 3 ((Ord 𝐵𝐴𝐵) → Ord 𝐴)
31, 2jca 554 . 2 ((Ord 𝐵𝐴𝐵) → (Ord 𝐵 ∧ Ord 𝐴))
4 simpl 473 . . 3 ((Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐵)
5 ordsuc 7014 . . . 4 (Ord 𝐵 ↔ Ord suc 𝐵)
6 ordelord 5745 . . . . 5 ((Ord suc 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord suc 𝐴)
7 ordsuc 7014 . . . . 5 (Ord 𝐴 ↔ Ord suc 𝐴)
86, 7sylibr 224 . . . 4 ((Ord suc 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐴)
95, 8sylanb 489 . . 3 ((Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → Ord 𝐴)
104, 9jca 554 . 2 ((Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵) → (Ord 𝐵 ∧ Ord 𝐴))
11 ordsseleq 5752 . . . . . . . 8 ((Ord suc 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
127, 11sylanb 489 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
1312ancoms 469 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐴) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
1413adantl 482 . . . . 5 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
15 ordsucss 7018 . . . . . . 7 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
1615ad2antrl 764 . . . . . 6 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴𝐵 → suc 𝐴𝐵))
17 sucssel 5819 . . . . . . 7 (𝐴 ∈ V → (suc 𝐴𝐵𝐴𝐵))
1817adantr 481 . . . . . 6 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴𝐵𝐴𝐵))
1916, 18impbid 202 . . . . 5 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴𝐵 ↔ suc 𝐴𝐵))
20 sucexb 7009 . . . . . . 7 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
21 elsucg 5792 . . . . . . 7 (suc 𝐴 ∈ V → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
2220, 21sylbi 207 . . . . . 6 (𝐴 ∈ V → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
2322adantr 481 . . . . 5 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (suc 𝐴 ∈ suc 𝐵 ↔ (suc 𝐴𝐵 ∨ suc 𝐴 = 𝐵)))
2414, 19, 233bitr4d 300 . . . 4 ((𝐴 ∈ V ∧ (Ord 𝐵 ∧ Ord 𝐴)) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
2524ex 450 . . 3 (𝐴 ∈ V → ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵)))
26 elex 3212 . . . . 5 (𝐴𝐵𝐴 ∈ V)
27 elex 3212 . . . . . 6 (suc 𝐴 ∈ suc 𝐵 → suc 𝐴 ∈ V)
2827, 20sylibr 224 . . . . 5 (suc 𝐴 ∈ suc 𝐵𝐴 ∈ V)
2926, 28pm5.21ni 367 . . . 4 𝐴 ∈ V → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
3029a1d 25 . . 3 𝐴 ∈ V → ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵)))
3125, 30pm2.61i 176 . 2 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
323, 10, 31pm5.21nd 941 1 (Ord 𝐵 → (𝐴𝐵 ↔ suc 𝐴 ∈ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  Ord word 5722  suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729
This theorem is referenced by:  ordsucsssuc  7023  oalimcl  7640  omlimcl  7658  pssnn  8178  cantnflt  8569  cantnfp1lem3  8577  r1pw  8708  r1pwALT  8709  rankelpr  8736  rankelop  8737  rankxplim3  8744  infpssrlem4  9128  axdc3lem2  9273  axdc3lem4  9275  grur1a  9641  bnj570  30975  bnj1001  31028  nosupno  31849
  Copyright terms: Public domain W3C validator