MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1c Structured version   Visualization version   GIF version

Theorem rankr1c 8684
Description: A relationship between the rank function and the cumulative hierarchy of sets function 𝑅1. Proposition 9.15(2) of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1c (𝐴 (𝑅1 “ On) → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵))))

Proof of Theorem rankr1c
StepHypRef Expression
1 id 22 . . . 4 (𝐵 = (rank‘𝐴) → 𝐵 = (rank‘𝐴))
2 rankdmr1 8664 . . . 4 (rank‘𝐴) ∈ dom 𝑅1
31, 2syl6eqel 2709 . . 3 (𝐵 = (rank‘𝐴) → 𝐵 ∈ dom 𝑅1)
43a1i 11 . 2 (𝐴 (𝑅1 “ On) → (𝐵 = (rank‘𝐴) → 𝐵 ∈ dom 𝑅1))
5 elfvdm 6220 . . . . 5 (𝐴 ∈ (𝑅1‘suc 𝐵) → suc 𝐵 ∈ dom 𝑅1)
6 r1funlim 8629 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
76simpri 478 . . . . . 6 Lim dom 𝑅1
8 limsuc 7049 . . . . . 6 (Lim dom 𝑅1 → (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1))
97, 8ax-mp 5 . . . . 5 (𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1)
105, 9sylibr 224 . . . 4 (𝐴 ∈ (𝑅1‘suc 𝐵) → 𝐵 ∈ dom 𝑅1)
1110adantl 482 . . 3 ((¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) → 𝐵 ∈ dom 𝑅1)
1211a1i 11 . 2 (𝐴 (𝑅1 “ On) → ((¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) → 𝐵 ∈ dom 𝑅1))
13 rankr1clem 8683 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (¬ 𝐴 ∈ (𝑅1𝐵) ↔ 𝐵 ⊆ (rank‘𝐴)))
14 rankr1ag 8665 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ suc 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵))
159, 14sylan2b 492 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ∈ suc 𝐵))
16 rankon 8658 . . . . . . 7 (rank‘𝐴) ∈ On
17 limord 5784 . . . . . . . . . 10 (Lim dom 𝑅1 → Ord dom 𝑅1)
187, 17ax-mp 5 . . . . . . . . 9 Ord dom 𝑅1
19 ordelon 5747 . . . . . . . . 9 ((Ord dom 𝑅1𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On)
2018, 19mpan 706 . . . . . . . 8 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
2120adantl 482 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐵 ∈ On)
22 onsssuc 5813 . . . . . . 7 (((rank‘𝐴) ∈ On ∧ 𝐵 ∈ On) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵))
2316, 21, 22sylancr 695 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ⊆ 𝐵 ↔ (rank‘𝐴) ∈ suc 𝐵))
2415, 23bitr4d 271 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘suc 𝐵) ↔ (rank‘𝐴) ⊆ 𝐵))
2513, 24anbi12d 747 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) ↔ (𝐵 ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ⊆ 𝐵)))
26 eqss 3618 . . . 4 (𝐵 = (rank‘𝐴) ↔ (𝐵 ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ⊆ 𝐵))
2725, 26syl6rbbr 279 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵))))
2827ex 450 . 2 (𝐴 (𝑅1 “ On) → (𝐵 ∈ dom 𝑅1 → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)))))
294, 12, 28pm5.21ndd 369 1 (𝐴 (𝑅1 “ On) → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wss 3574   cuni 4436  dom cdm 5114  cima 5117  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725  Fun wfun 5882  cfv 5888  𝑅1cr1 8625  rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627  df-rank 8628
This theorem is referenced by:  rankidn  8685  rankpwi  8686  rankr1g  8695  r1tskina  9604
  Copyright terms: Public domain W3C validator