MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resthauslem Structured version   Visualization version   GIF version

Theorem resthauslem 21167
Description: Lemma for resthaus 21172 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
resthauslem.1 (𝐽𝐴𝐽 ∈ Top)
resthauslem.2 ((𝐽𝐴 ∧ ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽) ∧ ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t 𝑆) Cn 𝐽)) → (𝐽t 𝑆) ∈ 𝐴)
Assertion
Ref Expression
resthauslem ((𝐽𝐴𝑆𝑉) → (𝐽t 𝑆) ∈ 𝐴)

Proof of Theorem resthauslem
StepHypRef Expression
1 simpl 473 . 2 ((𝐽𝐴𝑆𝑉) → 𝐽𝐴)
2 f1oi 6174 . . 3 ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1-onto→(𝑆 𝐽)
3 f1of1 6136 . . 3 (( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1-onto→(𝑆 𝐽) → ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽))
42, 3mp1i 13 . 2 ((𝐽𝐴𝑆𝑉) → ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽))
5 inss2 3834 . . . . 5 (𝑆 𝐽) ⊆ 𝐽
6 resabs1 5427 . . . . 5 ((𝑆 𝐽) ⊆ 𝐽 → (( I ↾ 𝐽) ↾ (𝑆 𝐽)) = ( I ↾ (𝑆 𝐽)))
75, 6ax-mp 5 . . . 4 (( I ↾ 𝐽) ↾ (𝑆 𝐽)) = ( I ↾ (𝑆 𝐽))
8 resthauslem.1 . . . . . . . 8 (𝐽𝐴𝐽 ∈ Top)
98adantr 481 . . . . . . 7 ((𝐽𝐴𝑆𝑉) → 𝐽 ∈ Top)
10 eqid 2622 . . . . . . . 8 𝐽 = 𝐽
1110toptopon 20722 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
129, 11sylib 208 . . . . . 6 ((𝐽𝐴𝑆𝑉) → 𝐽 ∈ (TopOn‘ 𝐽))
13 idcn 21061 . . . . . 6 (𝐽 ∈ (TopOn‘ 𝐽) → ( I ↾ 𝐽) ∈ (𝐽 Cn 𝐽))
1412, 13syl 17 . . . . 5 ((𝐽𝐴𝑆𝑉) → ( I ↾ 𝐽) ∈ (𝐽 Cn 𝐽))
1510cnrest 21089 . . . . 5 ((( I ↾ 𝐽) ∈ (𝐽 Cn 𝐽) ∧ (𝑆 𝐽) ⊆ 𝐽) → (( I ↾ 𝐽) ↾ (𝑆 𝐽)) ∈ ((𝐽t (𝑆 𝐽)) Cn 𝐽))
1614, 5, 15sylancl 694 . . . 4 ((𝐽𝐴𝑆𝑉) → (( I ↾ 𝐽) ↾ (𝑆 𝐽)) ∈ ((𝐽t (𝑆 𝐽)) Cn 𝐽))
177, 16syl5eqelr 2706 . . 3 ((𝐽𝐴𝑆𝑉) → ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t (𝑆 𝐽)) Cn 𝐽))
1810restin 20970 . . . 4 ((𝐽𝐴𝑆𝑉) → (𝐽t 𝑆) = (𝐽t (𝑆 𝐽)))
1918oveq1d 6665 . . 3 ((𝐽𝐴𝑆𝑉) → ((𝐽t 𝑆) Cn 𝐽) = ((𝐽t (𝑆 𝐽)) Cn 𝐽))
2017, 19eleqtrrd 2704 . 2 ((𝐽𝐴𝑆𝑉) → ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t 𝑆) Cn 𝐽))
21 resthauslem.2 . 2 ((𝐽𝐴 ∧ ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽) ∧ ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t 𝑆) Cn 𝐽)) → (𝐽t 𝑆) ∈ 𝐴)
221, 4, 20, 21syl3anc 1326 1 ((𝐽𝐴𝑆𝑉) → (𝐽t 𝑆) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cin 3573  wss 3574   cuni 4436   I cid 5023  cres 5116  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  t crest 16081  Topctop 20698  TopOnctopon 20715   Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031
This theorem is referenced by:  restt0  21170  restt1  21171  resthaus  21172
  Copyright terms: Public domain W3C validator