MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvlt1 Structured version   Visualization version   GIF version

Theorem radcnvlt1 24172
Description: If 𝑋 is within the open disk of radius 𝑅 centered at zero, then the infinite series converges absolutely at 𝑋, and also converges when the series is multiplied by 𝑛. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
radcnv.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
radcnvlt.x (𝜑𝑋 ∈ ℂ)
radcnvlt.a (𝜑 → (abs‘𝑋) < 𝑅)
radcnvlt1.h 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
Assertion
Ref Expression
radcnvlt1 (𝜑 → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ ))
Distinct variable groups:   𝑚,𝑛,𝑥,𝐴   𝑚,𝐻   𝜑,𝑚   𝑚,𝑋   𝑚,𝑟,𝐺
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑚,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)   𝑋(𝑥,𝑛,𝑟)

Proof of Theorem radcnvlt1
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 radcnvlt.a . . . . 5 (𝜑 → (abs‘𝑋) < 𝑅)
2 ressxr 10083 . . . . . . 7 ℝ ⊆ ℝ*
3 radcnvlt.x . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
43abscld 14175 . . . . . . 7 (𝜑 → (abs‘𝑋) ∈ ℝ)
52, 4sseldi 3601 . . . . . 6 (𝜑 → (abs‘𝑋) ∈ ℝ*)
6 iccssxr 12256 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
7 pser.g . . . . . . . 8 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
8 radcnv.a . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
9 radcnv.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
107, 8, 9radcnvcl 24171 . . . . . . 7 (𝜑𝑅 ∈ (0[,]+∞))
116, 10sseldi 3601 . . . . . 6 (𝜑𝑅 ∈ ℝ*)
12 xrltnle 10105 . . . . . 6 (((abs‘𝑋) ∈ ℝ*𝑅 ∈ ℝ*) → ((abs‘𝑋) < 𝑅 ↔ ¬ 𝑅 ≤ (abs‘𝑋)))
135, 11, 12syl2anc 693 . . . . 5 (𝜑 → ((abs‘𝑋) < 𝑅 ↔ ¬ 𝑅 ≤ (abs‘𝑋)))
141, 13mpbid 222 . . . 4 (𝜑 → ¬ 𝑅 ≤ (abs‘𝑋))
159breq1i 4660 . . . . . 6 (𝑅 ≤ (abs‘𝑋) ↔ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ) ≤ (abs‘𝑋))
16 ssrab2 3687 . . . . . . . 8 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ
1716, 2sstri 3612 . . . . . . 7 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ*
18 supxrleub 12156 . . . . . . 7 (({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ* ∧ (abs‘𝑋) ∈ ℝ*) → (sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ) ≤ (abs‘𝑋) ↔ ∀𝑠 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑠 ≤ (abs‘𝑋)))
1917, 5, 18sylancr 695 . . . . . 6 (𝜑 → (sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ) ≤ (abs‘𝑋) ↔ ∀𝑠 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑠 ≤ (abs‘𝑋)))
2015, 19syl5bb 272 . . . . 5 (𝜑 → (𝑅 ≤ (abs‘𝑋) ↔ ∀𝑠 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑠 ≤ (abs‘𝑋)))
21 fveq2 6191 . . . . . . . 8 (𝑟 = 𝑠 → (𝐺𝑟) = (𝐺𝑠))
2221seqeq3d 12809 . . . . . . 7 (𝑟 = 𝑠 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺𝑠)))
2322eleq1d 2686 . . . . . 6 (𝑟 = 𝑠 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺𝑠)) ∈ dom ⇝ ))
2423ralrab 3368 . . . . 5 (∀𝑠 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑠 ≤ (abs‘𝑋) ↔ ∀𝑠 ∈ ℝ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ → 𝑠 ≤ (abs‘𝑋)))
2520, 24syl6bb 276 . . . 4 (𝜑 → (𝑅 ≤ (abs‘𝑋) ↔ ∀𝑠 ∈ ℝ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ → 𝑠 ≤ (abs‘𝑋))))
2614, 25mtbid 314 . . 3 (𝜑 → ¬ ∀𝑠 ∈ ℝ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ → 𝑠 ≤ (abs‘𝑋)))
27 rexanali 2998 . . 3 (∃𝑠 ∈ ℝ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ (abs‘𝑋)) ↔ ¬ ∀𝑠 ∈ ℝ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ → 𝑠 ≤ (abs‘𝑋)))
2826, 27sylibr 224 . 2 (𝜑 → ∃𝑠 ∈ ℝ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ (abs‘𝑋)))
29 ltnle 10117 . . . . . . 7 (((abs‘𝑋) ∈ ℝ ∧ 𝑠 ∈ ℝ) → ((abs‘𝑋) < 𝑠 ↔ ¬ 𝑠 ≤ (abs‘𝑋)))
304, 29sylan 488 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → ((abs‘𝑋) < 𝑠 ↔ ¬ 𝑠 ≤ (abs‘𝑋)))
3130adantr 481 . . . . 5 (((𝜑𝑠 ∈ ℝ) ∧ seq0( + , (𝐺𝑠)) ∈ dom ⇝ ) → ((abs‘𝑋) < 𝑠 ↔ ¬ 𝑠 ≤ (abs‘𝑋)))
328ad2antrr 762 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 𝐴:ℕ0⟶ℂ)
333ad2antrr 762 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 𝑋 ∈ ℂ)
34 simplr 792 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 𝑠 ∈ ℝ)
3534recnd 10068 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 𝑠 ∈ ℂ)
36 simprr 796 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → (abs‘𝑋) < 𝑠)
37 0red 10041 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 0 ∈ ℝ)
3833abscld 14175 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → (abs‘𝑋) ∈ ℝ)
3933absge0d 14183 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 0 ≤ (abs‘𝑋))
4037, 38, 34, 39, 36lelttrd 10195 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 0 < 𝑠)
4137, 34, 40ltled 10185 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 0 ≤ 𝑠)
4234, 41absidd 14161 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → (abs‘𝑠) = 𝑠)
4336, 42breqtrrd 4681 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → (abs‘𝑋) < (abs‘𝑠))
44 simprl 794 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → seq0( + , (𝐺𝑠)) ∈ dom ⇝ )
45 radcnvlt1.h . . . . . . . 8 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
467, 32, 33, 35, 43, 44, 45radcnvlem1 24167 . . . . . . 7 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → seq0( + , 𝐻) ∈ dom ⇝ )
477, 32, 33, 35, 43, 44radcnvlem2 24168 . . . . . . 7 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )
4846, 47jca 554 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ ))
4948expr 643 . . . . 5 (((𝜑𝑠 ∈ ℝ) ∧ seq0( + , (𝐺𝑠)) ∈ dom ⇝ ) → ((abs‘𝑋) < 𝑠 → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )))
5031, 49sylbird 250 . . . 4 (((𝜑𝑠 ∈ ℝ) ∧ seq0( + , (𝐺𝑠)) ∈ dom ⇝ ) → (¬ 𝑠 ≤ (abs‘𝑋) → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )))
5150expimpd 629 . . 3 ((𝜑𝑠 ∈ ℝ) → ((seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ (abs‘𝑋)) → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )))
5251rexlimdva 3031 . 2 (𝜑 → (∃𝑠 ∈ ℝ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ (abs‘𝑋)) → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )))
5328, 52mpd 15 1 (𝜑 → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  wss 3574   class class class wbr 4653  cmpt 4729  dom cdm 5114  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  supcsup 8346  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  0cn0 11292  [,]cicc 12178  seqcseq 12801  cexp 12860  abscabs 13974  cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  radcnvlt2  24173  dvradcnv  24175  pserulm  24176
  Copyright terms: Public domain W3C validator