MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filufint Structured version   Visualization version   GIF version

Theorem filufint 21724
Description: A filter is equal to the intersection of the ultrafilters containing it. (Contributed by Jeff Hankins, 1-Jan-2010.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filufint (𝐹 ∈ (Fil‘𝑋) → {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓} = 𝐹)
Distinct variable groups:   𝑓,𝐹   𝑓,𝑋

Proof of Theorem filufint
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . 5 𝑥 ∈ V
21elintrab 4488 . . . 4 (𝑥 {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓} ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐹𝑓𝑥𝑓))
3 filsspw 21655 . . . . . . . . . . . . . 14 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
433ad2ant1 1082 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → 𝐹 ⊆ 𝒫 𝑋)
5 difss 3737 . . . . . . . . . . . . . . 15 (𝑋𝑥) ⊆ 𝑋
6 filtop 21659 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
7 difexg 4808 . . . . . . . . . . . . . . . . . 18 (𝑋𝐹 → (𝑋𝑥) ∈ V)
86, 7syl 17 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (Fil‘𝑋) → (𝑋𝑥) ∈ V)
983ad2ant1 1082 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑋𝑥) ∈ V)
10 elpwg 4166 . . . . . . . . . . . . . . . 16 ((𝑋𝑥) ∈ V → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
119, 10syl 17 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
125, 11mpbiri 248 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑋𝑥) ∈ 𝒫 𝑋)
1312snssd 4340 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → {(𝑋𝑥)} ⊆ 𝒫 𝑋)
144, 13unssd 3789 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝐹 ∪ {(𝑋𝑥)}) ⊆ 𝒫 𝑋)
15 ssun1 3776 . . . . . . . . . . . . . 14 𝐹 ⊆ (𝐹 ∪ {(𝑋𝑥)})
16 filn0 21666 . . . . . . . . . . . . . 14 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
17 ssn0 3976 . . . . . . . . . . . . . 14 ((𝐹 ⊆ (𝐹 ∪ {(𝑋𝑥)}) ∧ 𝐹 ≠ ∅) → (𝐹 ∪ {(𝑋𝑥)}) ≠ ∅)
1815, 16, 17sylancr 695 . . . . . . . . . . . . 13 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {(𝑋𝑥)}) ≠ ∅)
19183ad2ant1 1082 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝐹 ∪ {(𝑋𝑥)}) ≠ ∅)
20 elsni 4194 . . . . . . . . . . . . . . 15 (𝑧 ∈ {(𝑋𝑥)} → 𝑧 = (𝑋𝑥))
21 filelss 21656 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → 𝑦𝑋)
22213adant3 1081 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → 𝑦𝑋)
23 reldisj 4020 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝑋 → ((𝑦 ∩ (𝑋𝑥)) = ∅ ↔ 𝑦 ⊆ (𝑋 ∖ (𝑋𝑥))))
2422, 23syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → ((𝑦 ∩ (𝑋𝑥)) = ∅ ↔ 𝑦 ⊆ (𝑋 ∖ (𝑋𝑥))))
25 dfss4 3858 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝑋 ↔ (𝑋 ∖ (𝑋𝑥)) = 𝑥)
2625biimpi 206 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝑋 → (𝑋 ∖ (𝑋𝑥)) = 𝑥)
2726sseq2d 3633 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝑋 → (𝑦 ⊆ (𝑋 ∖ (𝑋𝑥)) ↔ 𝑦𝑥))
28273ad2ant3 1084 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → (𝑦 ⊆ (𝑋 ∖ (𝑋𝑥)) ↔ 𝑦𝑥))
2924, 28bitrd 268 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → ((𝑦 ∩ (𝑋𝑥)) = ∅ ↔ 𝑦𝑥))
30 filss 21657 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹𝑥𝑋𝑦𝑥)) → 𝑥𝐹)
31303exp2 1285 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ (Fil‘𝑋) → (𝑦𝐹 → (𝑥𝑋 → (𝑦𝑥𝑥𝐹))))
32313imp 1256 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → (𝑦𝑥𝑥𝐹))
3329, 32sylbid 230 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → ((𝑦 ∩ (𝑋𝑥)) = ∅ → 𝑥𝐹))
3433necon3bd 2808 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹𝑥𝑋) → (¬ 𝑥𝐹 → (𝑦 ∩ (𝑋𝑥)) ≠ ∅))
35343exp 1264 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (Fil‘𝑋) → (𝑦𝐹 → (𝑥𝑋 → (¬ 𝑥𝐹 → (𝑦 ∩ (𝑋𝑥)) ≠ ∅))))
3635com24 95 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (Fil‘𝑋) → (¬ 𝑥𝐹 → (𝑥𝑋 → (𝑦𝐹 → (𝑦 ∩ (𝑋𝑥)) ≠ ∅))))
37363imp1 1280 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑦𝐹) → (𝑦 ∩ (𝑋𝑥)) ≠ ∅)
38 ineq2 3808 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑋𝑥) → (𝑦𝑧) = (𝑦 ∩ (𝑋𝑥)))
3938neeq1d 2853 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑋𝑥) → ((𝑦𝑧) ≠ ∅ ↔ (𝑦 ∩ (𝑋𝑥)) ≠ ∅))
4037, 39syl5ibrcom 237 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑦𝐹) → (𝑧 = (𝑋𝑥) → (𝑦𝑧) ≠ ∅))
4140expimpd 629 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ((𝑦𝐹𝑧 = (𝑋𝑥)) → (𝑦𝑧) ≠ ∅))
4220, 41sylan2i 687 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ((𝑦𝐹𝑧 ∈ {(𝑋𝑥)}) → (𝑦𝑧) ≠ ∅))
4342ralrimivv 2970 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ∀𝑦𝐹𝑧 ∈ {(𝑋𝑥)} (𝑦𝑧) ≠ ∅)
44 filfbas 21652 . . . . . . . . . . . . . . 15 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
45443ad2ant1 1082 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → 𝐹 ∈ (fBas‘𝑋))
465a1i 11 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑋𝑥) ⊆ 𝑋)
47263ad2ant2 1083 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋 ∧ (𝑋𝑥) = ∅) → (𝑋 ∖ (𝑋𝑥)) = 𝑥)
48 difeq2 3722 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋𝑥) = ∅ → (𝑋 ∖ (𝑋𝑥)) = (𝑋 ∖ ∅))
49 dif0 3950 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 ∖ ∅) = 𝑋
5048, 49syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋𝑥) = ∅ → (𝑋 ∖ (𝑋𝑥)) = 𝑋)
51503ad2ant3 1084 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋 ∧ (𝑋𝑥) = ∅) → (𝑋 ∖ (𝑋𝑥)) = 𝑋)
5247, 51eqtr3d 2658 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋 ∧ (𝑋𝑥) = ∅) → 𝑥 = 𝑋)
5363ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋 ∧ (𝑋𝑥) = ∅) → 𝑋𝐹)
5452, 53eqeltrd 2701 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋 ∧ (𝑋𝑥) = ∅) → 𝑥𝐹)
55543expia 1267 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) = ∅ → 𝑥𝐹))
5655necon3bd 2808 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 → (𝑋𝑥) ≠ ∅))
5756ex 450 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝑋 → (¬ 𝑥𝐹 → (𝑋𝑥) ≠ ∅)))
5857com23 86 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (Fil‘𝑋) → (¬ 𝑥𝐹 → (𝑥𝑋 → (𝑋𝑥) ≠ ∅)))
59583imp 1256 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑋𝑥) ≠ ∅)
6063ad2ant1 1082 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → 𝑋𝐹)
61 snfbas 21670 . . . . . . . . . . . . . . 15 (((𝑋𝑥) ⊆ 𝑋 ∧ (𝑋𝑥) ≠ ∅ ∧ 𝑋𝐹) → {(𝑋𝑥)} ∈ (fBas‘𝑋))
6246, 59, 60, 61syl3anc 1326 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → {(𝑋𝑥)} ∈ (fBas‘𝑋))
63 fbunfip 21673 . . . . . . . . . . . . . 14 ((𝐹 ∈ (fBas‘𝑋) ∧ {(𝑋𝑥)} ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(𝐹 ∪ {(𝑋𝑥)})) ↔ ∀𝑦𝐹𝑧 ∈ {(𝑋𝑥)} (𝑦𝑧) ≠ ∅))
6445, 62, 63syl2anc 693 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (¬ ∅ ∈ (fi‘(𝐹 ∪ {(𝑋𝑥)})) ↔ ∀𝑦𝐹𝑧 ∈ {(𝑋𝑥)} (𝑦𝑧) ≠ ∅))
6543, 64mpbird 247 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ¬ ∅ ∈ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
66 fsubbas 21671 . . . . . . . . . . . . . 14 (𝑋𝐹 → ((fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {(𝑋𝑥)}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {(𝑋𝑥)}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {(𝑋𝑥)})))))
676, 66syl 17 . . . . . . . . . . . . 13 (𝐹 ∈ (Fil‘𝑋) → ((fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {(𝑋𝑥)}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {(𝑋𝑥)}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {(𝑋𝑥)})))))
68673ad2ant1 1082 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ((fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {(𝑋𝑥)}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {(𝑋𝑥)}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {(𝑋𝑥)})))))
6914, 19, 65, 68mpbir3and 1245 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋))
70 fgcl 21682 . . . . . . . . . . 11 ((fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ∈ (Fil‘𝑋))
7169, 70syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ∈ (Fil‘𝑋))
72 filssufil 21716 . . . . . . . . . . 11 ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋)(𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓)
73 snex 4908 . . . . . . . . . . . . . . . . . . . . 21 {(𝑋𝑥)} ∈ V
74 unexg 6959 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Fil‘𝑋) ∧ {(𝑋𝑥)} ∈ V) → (𝐹 ∪ {(𝑋𝑥)}) ∈ V)
7573, 74mpan2 707 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {(𝑋𝑥)}) ∈ V)
76 ssfii 8325 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∪ {(𝑋𝑥)}) ∈ V → (𝐹 ∪ {(𝑋𝑥)}) ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
7775, 76syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {(𝑋𝑥)}) ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
78773ad2ant1 1082 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝐹 ∪ {(𝑋𝑥)}) ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
7978unssad 3790 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → 𝐹 ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
80 ssfg 21676 . . . . . . . . . . . . . . . . . 18 ((fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋) → (fi‘(𝐹 ∪ {(𝑋𝑥)})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
8169, 80syl 17 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (fi‘(𝐹 ∪ {(𝑋𝑥)})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
8279, 81sstrd 3613 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
8382ad2antrr 762 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
84 simpr 477 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓)
8583, 84sstrd 3613 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → 𝐹𝑓)
86 ufilfil 21708 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (UFil‘𝑋) → 𝑓 ∈ (Fil‘𝑋))
87 0nelfil 21653 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝑓)
8886, 87syl 17 . . . . . . . . . . . . . . . 16 (𝑓 ∈ (UFil‘𝑋) → ¬ ∅ ∈ 𝑓)
8988ad2antlr 763 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → ¬ ∅ ∈ 𝑓)
90 disjdif 4040 . . . . . . . . . . . . . . . . 17 (𝑥 ∩ (𝑋𝑥)) = ∅
9186ad2antlr 763 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → 𝑓 ∈ (Fil‘𝑋))
92 simprr 796 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → 𝑥𝑓)
9377unssbd 3791 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 ∈ (Fil‘𝑋) → {(𝑋𝑥)} ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
94933ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → {(𝑋𝑥)} ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
9594adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) → {(𝑋𝑥)} ⊆ (fi‘(𝐹 ∪ {(𝑋𝑥)})))
9669adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) → (fi‘(𝐹 ∪ {(𝑋𝑥)})) ∈ (fBas‘𝑋))
9796, 80syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) → (fi‘(𝐹 ∪ {(𝑋𝑥)})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
9895, 97sstrd 3613 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) → {(𝑋𝑥)} ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
9998adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → {(𝑋𝑥)} ⊆ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))))
100 simprl 794 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓)
10199, 100sstrd 3613 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → {(𝑋𝑥)} ⊆ 𝑓)
102 snidg 4206 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑥) ∈ V → (𝑋𝑥) ∈ {(𝑋𝑥)})
1038, 102syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 ∈ (Fil‘𝑋) → (𝑋𝑥) ∈ {(𝑋𝑥)})
1041033ad2ant1 1082 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑋𝑥) ∈ {(𝑋𝑥)})
105104ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → (𝑋𝑥) ∈ {(𝑋𝑥)})
106101, 105sseldd 3604 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → (𝑋𝑥) ∈ 𝑓)
107 filin 21658 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ (Fil‘𝑋) ∧ 𝑥𝑓 ∧ (𝑋𝑥) ∈ 𝑓) → (𝑥 ∩ (𝑋𝑥)) ∈ 𝑓)
10891, 92, 106, 107syl3anc 1326 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → (𝑥 ∩ (𝑋𝑥)) ∈ 𝑓)
10990, 108syl5eqelr 2706 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓𝑥𝑓)) → ∅ ∈ 𝑓)
110109expr 643 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → (𝑥𝑓 → ∅ ∈ 𝑓))
11189, 110mtod 189 . . . . . . . . . . . . . 14 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → ¬ 𝑥𝑓)
11285, 111jca 554 . . . . . . . . . . . . 13 ((((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) ∧ 𝑓 ∈ (UFil‘𝑋)) ∧ (𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓) → (𝐹𝑓 ∧ ¬ 𝑥𝑓))
113112exp31 630 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (𝑓 ∈ (UFil‘𝑋) → ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓 → (𝐹𝑓 ∧ ¬ 𝑥𝑓))))
114113reximdvai 3015 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → (∃𝑓 ∈ (UFil‘𝑋)(𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ⊆ 𝑓 → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
11572, 114syl5 34 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ((𝑋filGen(fi‘(𝐹 ∪ {(𝑋𝑥)}))) ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
11671, 115mpd 15 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹𝑥𝑋) → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓))
1171163expia 1267 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹) → (𝑥𝑋 → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
118 filssufil 21716 . . . . . . . . . 10 (𝐹 ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
119 filelss 21656 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (Fil‘𝑋) ∧ 𝑥𝑓) → 𝑥𝑋)
120119ex 450 . . . . . . . . . . . . . . . 16 (𝑓 ∈ (Fil‘𝑋) → (𝑥𝑓𝑥𝑋))
12186, 120syl 17 . . . . . . . . . . . . . . 15 (𝑓 ∈ (UFil‘𝑋) → (𝑥𝑓𝑥𝑋))
122121con3d 148 . . . . . . . . . . . . . 14 (𝑓 ∈ (UFil‘𝑋) → (¬ 𝑥𝑋 → ¬ 𝑥𝑓))
123122impcom 446 . . . . . . . . . . . . 13 ((¬ 𝑥𝑋𝑓 ∈ (UFil‘𝑋)) → ¬ 𝑥𝑓)
124123a1d 25 . . . . . . . . . . . 12 ((¬ 𝑥𝑋𝑓 ∈ (UFil‘𝑋)) → (𝐹𝑓 → ¬ 𝑥𝑓))
125124ancld 576 . . . . . . . . . . 11 ((¬ 𝑥𝑋𝑓 ∈ (UFil‘𝑋)) → (𝐹𝑓 → (𝐹𝑓 ∧ ¬ 𝑥𝑓)))
126125reximdva 3017 . . . . . . . . . 10 𝑥𝑋 → (∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓 → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
127118, 126syl5com 31 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → (¬ 𝑥𝑋 → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
128127adantr 481 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹) → (¬ 𝑥𝑋 → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
129117, 128pm2.61d 170 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ ¬ 𝑥𝐹) → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓))
130129ex 450 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (¬ 𝑥𝐹 → ∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓)))
131 rexanali 2998 . . . . . 6 (∃𝑓 ∈ (UFil‘𝑋)(𝐹𝑓 ∧ ¬ 𝑥𝑓) ↔ ¬ ∀𝑓 ∈ (UFil‘𝑋)(𝐹𝑓𝑥𝑓))
132130, 131syl6ib 241 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → (¬ 𝑥𝐹 → ¬ ∀𝑓 ∈ (UFil‘𝑋)(𝐹𝑓𝑥𝑓)))
133132con4d 114 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (∀𝑓 ∈ (UFil‘𝑋)(𝐹𝑓𝑥𝑓) → 𝑥𝐹))
1342, 133syl5bi 232 . . 3 (𝐹 ∈ (Fil‘𝑋) → (𝑥 {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓} → 𝑥𝐹))
135134ssrdv 3609 . 2 (𝐹 ∈ (Fil‘𝑋) → {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓} ⊆ 𝐹)
136 ssintub 4495 . . 3 𝐹 {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓}
137136a1i 11 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓})
138135, 137eqssd 3620 1 (𝐹 ∈ (Fil‘𝑋) → {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓} = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   cint 4475  cfv 5888  (class class class)co 6650  ficfi 8316  fBascfbas 19734  filGencfg 19735  Filcfil 21649  UFilcufil 21703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rpss 6937  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317  df-card 8765  df-ac 8939  df-cda 8990  df-fbas 19743  df-fg 19744  df-fil 21650  df-ufil 21705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator