Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexanuz3 Structured version   Visualization version   Unicode version

Theorem rexanuz3 39275
Description: Combine two different upper integer properties into one, for a single integer. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
rexanuz3.1  |-  F/ j
ph
rexanuz3.2  |-  Z  =  ( ZZ>= `  M )
rexanuz3.3  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ch )
rexanuz3.4  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps )
rexanuz3.5  |-  ( k  =  j  ->  ( ch 
<->  th ) )
rexanuz3.6  |-  ( k  =  j  ->  ( ps 
<->  ta ) )
Assertion
Ref Expression
rexanuz3  |-  ( ph  ->  E. j  e.  Z  ( th  /\  ta )
)
Distinct variable groups:    j, M    j, Z, k    ch, j    ps, j    ta, k    th, k
Allowed substitution hints:    ph( j, k)    ps( k)    ch( k)    th( j)    ta( j)    M( k)

Proof of Theorem rexanuz3
StepHypRef Expression
1 rexanuz3.3 . . . 4  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ch )
2 rexanuz3.4 . . . 4  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps )
31, 2jca 554 . . 3  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ch  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps ) )
4 rexanuz3.2 . . . 4  |-  Z  =  ( ZZ>= `  M )
54rexanuz2 14089 . . 3  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ch 
/\  ps )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ch  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps )
)
63, 5sylibr 224 . 2  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ch  /\  ps )
)
7 rexanuz3.1 . . 3  |-  F/ j
ph
84eleq2i 2693 . . . . . . . . . 10  |-  ( j  e.  Z  <->  j  e.  ( ZZ>= `  M )
)
98biimpi 206 . . . . . . . . 9  |-  ( j  e.  Z  ->  j  e.  ( ZZ>= `  M )
)
10 eluzelz 11697 . . . . . . . . 9  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
11 uzid 11702 . . . . . . . . 9  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
129, 10, 113syl 18 . . . . . . . 8  |-  ( j  e.  Z  ->  j  e.  ( ZZ>= `  j )
)
1312adantr 481 . . . . . . 7  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ch 
/\  ps ) )  -> 
j  e.  ( ZZ>= `  j ) )
14 simpr 477 . . . . . . 7  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ch 
/\  ps ) )  ->  A. k  e.  ( ZZ>=
`  j ) ( ch  /\  ps )
)
15 rexanuz3.5 . . . . . . . . 9  |-  ( k  =  j  ->  ( ch 
<->  th ) )
16 rexanuz3.6 . . . . . . . . 9  |-  ( k  =  j  ->  ( ps 
<->  ta ) )
1715, 16anbi12d 747 . . . . . . . 8  |-  ( k  =  j  ->  (
( ch  /\  ps ) 
<->  ( th  /\  ta ) ) )
1817rspcva 3307 . . . . . . 7  |-  ( ( j  e.  ( ZZ>= `  j )  /\  A. k  e.  ( ZZ>= `  j ) ( ch 
/\  ps ) )  -> 
( th  /\  ta ) )
1913, 14, 18syl2anc 693 . . . . . 6  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( ch 
/\  ps ) )  -> 
( th  /\  ta ) )
2019adantll 750 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  A. k  e.  ( ZZ>= `  j ) ( ch 
/\  ps ) )  -> 
( th  /\  ta ) )
2120ex 450 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ch  /\  ps )  ->  ( th  /\  ta ) ) )
2221ex 450 . . 3  |-  ( ph  ->  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>= `  j )
( ch  /\  ps )  ->  ( th  /\  ta ) ) ) )
237, 22reximdai 3012 . 2  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ch  /\  ps )  ->  E. j  e.  Z  ( th  /\  ta )
) )
246, 23mpd 15 1  |-  ( ph  ->  E. j  e.  Z  ( th  /\  ta )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912   E.wrex 2913   ` cfv 5888   ZZcz 11377   ZZ>=cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688
This theorem is referenced by:  smflimlem4  40982
  Copyright terms: Public domain W3C validator