MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scottex Structured version   Visualization version   GIF version

Theorem scottex 8748
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, is a set. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
scottex {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem scottex
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4790 . . . 4 ∅ ∈ V
2 eleq1 2689 . . . 4 (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V))
31, 2mpbiri 248 . . 3 (𝐴 = ∅ → 𝐴 ∈ V)
4 rabexg 4812 . . 3 (𝐴 ∈ V → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
53, 4syl 17 . 2 (𝐴 = ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
6 neq0 3930 . . 3 𝐴 = ∅ ↔ ∃𝑦 𝑦𝐴)
7 nfra1 2941 . . . . . 6 𝑦𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)
8 nfcv 2764 . . . . . 6 𝑦𝐴
97, 8nfrab 3123 . . . . 5 𝑦{𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}
109nfel1 2779 . . . 4 𝑦{𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
11 rsp 2929 . . . . . . . 8 (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → (𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))
1211com12 32 . . . . . . 7 (𝑦𝐴 → (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → (rank‘𝑥) ⊆ (rank‘𝑦)))
1312ralrimivw 2967 . . . . . 6 (𝑦𝐴 → ∀𝑥𝐴 (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → (rank‘𝑥) ⊆ (rank‘𝑦)))
14 ss2rab 3678 . . . . . 6 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ⊆ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} ↔ ∀𝑥𝐴 (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → (rank‘𝑥) ⊆ (rank‘𝑦)))
1513, 14sylibr 224 . . . . 5 (𝑦𝐴 → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ⊆ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)})
16 rankon 8658 . . . . . . . 8 (rank‘𝑦) ∈ On
17 fveq2 6191 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (rank‘𝑥) = (rank‘𝑤))
1817sseq1d 3632 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑤) ⊆ (rank‘𝑦)))
1918elrab 3363 . . . . . . . . . 10 (𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} ↔ (𝑤𝐴 ∧ (rank‘𝑤) ⊆ (rank‘𝑦)))
2019simprbi 480 . . . . . . . . 9 (𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} → (rank‘𝑤) ⊆ (rank‘𝑦))
2120rgen 2922 . . . . . . . 8 𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ (rank‘𝑦)
22 sseq2 3627 . . . . . . . . . 10 (𝑧 = (rank‘𝑦) → ((rank‘𝑤) ⊆ 𝑧 ↔ (rank‘𝑤) ⊆ (rank‘𝑦)))
2322ralbidv 2986 . . . . . . . . 9 (𝑧 = (rank‘𝑦) → (∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧 ↔ ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ (rank‘𝑦)))
2423rspcev 3309 . . . . . . . 8 (((rank‘𝑦) ∈ On ∧ ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ (rank‘𝑦)) → ∃𝑧 ∈ On ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧)
2516, 21, 24mp2an 708 . . . . . . 7 𝑧 ∈ On ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧
26 bndrank 8704 . . . . . . 7 (∃𝑧 ∈ On ∀𝑤 ∈ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} (rank‘𝑤) ⊆ 𝑧 → {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
2725, 26ax-mp 5 . . . . . 6 {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
2827ssex 4802 . . . . 5 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ⊆ {𝑥𝐴 ∣ (rank‘𝑥) ⊆ (rank‘𝑦)} → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
2915, 28syl 17 . . . 4 (𝑦𝐴 → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
3010, 29exlimi 2086 . . 3 (∃𝑦 𝑦𝐴 → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
316, 30sylbi 207 . 2 𝐴 = ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V)
325, 31pm2.61i 176 1 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  wss 3574  c0 3915  Oncon0 5723  cfv 5888  rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627  df-rank 8628
This theorem is referenced by:  scottexs  8750  cplem2  8753  kardex  8757  scottexf  33976
  Copyright terms: Public domain W3C validator