| Step | Hyp | Ref
| Expression |
| 1 | | isfinite2 8218 |
. . . . . . . 8
⊢ (𝐴 ≺ ω → 𝐴 ∈ Fin) |
| 2 | | axcclem.1 |
. . . . . . . . . 10
⊢ 𝐴 = (𝑥 ∖ {∅}) |
| 3 | 2 | eleq1i 2692 |
. . . . . . . . 9
⊢ (𝐴 ∈ Fin ↔ (𝑥 ∖ {∅}) ∈
Fin) |
| 4 | | undif1 4043 |
. . . . . . . . . . 11
⊢ ((𝑥 ∖ {∅}) ∪
{∅}) = (𝑥 ∪
{∅}) |
| 5 | | snfi 8038 |
. . . . . . . . . . . 12
⊢ {∅}
∈ Fin |
| 6 | | unfi 8227 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∖ {∅}) ∈ Fin
∧ {∅} ∈ Fin) → ((𝑥 ∖ {∅}) ∪ {∅}) ∈
Fin) |
| 7 | 5, 6 | mpan2 707 |
. . . . . . . . . . 11
⊢ ((𝑥 ∖ {∅}) ∈ Fin
→ ((𝑥 ∖
{∅}) ∪ {∅}) ∈ Fin) |
| 8 | 4, 7 | syl5eqelr 2706 |
. . . . . . . . . 10
⊢ ((𝑥 ∖ {∅}) ∈ Fin
→ (𝑥 ∪ {∅})
∈ Fin) |
| 9 | | ssun1 3776 |
. . . . . . . . . 10
⊢ 𝑥 ⊆ (𝑥 ∪ {∅}) |
| 10 | | ssfi 8180 |
. . . . . . . . . 10
⊢ (((𝑥 ∪ {∅}) ∈ Fin
∧ 𝑥 ⊆ (𝑥 ∪ {∅})) → 𝑥 ∈ Fin) |
| 11 | 8, 9, 10 | sylancl 694 |
. . . . . . . . 9
⊢ ((𝑥 ∖ {∅}) ∈ Fin
→ 𝑥 ∈
Fin) |
| 12 | 3, 11 | sylbi 207 |
. . . . . . . 8
⊢ (𝐴 ∈ Fin → 𝑥 ∈ Fin) |
| 13 | | dcomex 9269 |
. . . . . . . . . 10
⊢ ω
∈ V |
| 14 | | isfiniteg 8220 |
. . . . . . . . . 10
⊢ (ω
∈ V → (𝑥 ∈
Fin ↔ 𝑥 ≺
ω)) |
| 15 | 13, 14 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑥 ∈ Fin ↔ 𝑥 ≺
ω) |
| 16 | | sdomnen 7984 |
. . . . . . . . 9
⊢ (𝑥 ≺ ω → ¬
𝑥 ≈
ω) |
| 17 | 15, 16 | sylbi 207 |
. . . . . . . 8
⊢ (𝑥 ∈ Fin → ¬ 𝑥 ≈
ω) |
| 18 | 1, 12, 17 | 3syl 18 |
. . . . . . 7
⊢ (𝐴 ≺ ω → ¬
𝑥 ≈
ω) |
| 19 | 18 | con2i 134 |
. . . . . 6
⊢ (𝑥 ≈ ω → ¬
𝐴 ≺
ω) |
| 20 | | sdomentr 8094 |
. . . . . . 7
⊢ ((𝐴 ≺ 𝑥 ∧ 𝑥 ≈ ω) → 𝐴 ≺ ω) |
| 21 | 20 | expcom 451 |
. . . . . 6
⊢ (𝑥 ≈ ω → (𝐴 ≺ 𝑥 → 𝐴 ≺ ω)) |
| 22 | 19, 21 | mtod 189 |
. . . . 5
⊢ (𝑥 ≈ ω → ¬
𝐴 ≺ 𝑥) |
| 23 | | vex 3203 |
. . . . . 6
⊢ 𝑥 ∈ V |
| 24 | | difss 3737 |
. . . . . . 7
⊢ (𝑥 ∖ {∅}) ⊆
𝑥 |
| 25 | 2, 24 | eqsstri 3635 |
. . . . . 6
⊢ 𝐴 ⊆ 𝑥 |
| 26 | | ssdomg 8001 |
. . . . . 6
⊢ (𝑥 ∈ V → (𝐴 ⊆ 𝑥 → 𝐴 ≼ 𝑥)) |
| 27 | 23, 25, 26 | mp2 9 |
. . . . 5
⊢ 𝐴 ≼ 𝑥 |
| 28 | 22, 27 | jctil 560 |
. . . 4
⊢ (𝑥 ≈ ω → (𝐴 ≼ 𝑥 ∧ ¬ 𝐴 ≺ 𝑥)) |
| 29 | | bren2 7986 |
. . . 4
⊢ (𝐴 ≈ 𝑥 ↔ (𝐴 ≼ 𝑥 ∧ ¬ 𝐴 ≺ 𝑥)) |
| 30 | 28, 29 | sylibr 224 |
. . 3
⊢ (𝑥 ≈ ω → 𝐴 ≈ 𝑥) |
| 31 | | entr 8008 |
. . 3
⊢ ((𝐴 ≈ 𝑥 ∧ 𝑥 ≈ ω) → 𝐴 ≈ ω) |
| 32 | 30, 31 | mpancom 703 |
. 2
⊢ (𝑥 ≈ ω → 𝐴 ≈
ω) |
| 33 | | ensym 8005 |
. 2
⊢ (𝐴 ≈ ω → ω
≈ 𝐴) |
| 34 | | bren 7964 |
. . 3
⊢ (ω
≈ 𝐴 ↔
∃𝑓 𝑓:ω–1-1-onto→𝐴) |
| 35 | | f1of 6137 |
. . . . . . . 8
⊢ (𝑓:ω–1-1-onto→𝐴 → 𝑓:ω⟶𝐴) |
| 36 | | peano1 7085 |
. . . . . . . 8
⊢ ∅
∈ ω |
| 37 | | ffvelrn 6357 |
. . . . . . . 8
⊢ ((𝑓:ω⟶𝐴 ∧ ∅ ∈ ω)
→ (𝑓‘∅)
∈ 𝐴) |
| 38 | 35, 36, 37 | sylancl 694 |
. . . . . . 7
⊢ (𝑓:ω–1-1-onto→𝐴 → (𝑓‘∅) ∈ 𝐴) |
| 39 | | eldifn 3733 |
. . . . . . . . 9
⊢ ((𝑓‘∅) ∈ (𝑥 ∖ {∅}) → ¬
(𝑓‘∅) ∈
{∅}) |
| 40 | 39, 2 | eleq2s 2719 |
. . . . . . . 8
⊢ ((𝑓‘∅) ∈ 𝐴 → ¬ (𝑓‘∅) ∈
{∅}) |
| 41 | | fvex 6201 |
. . . . . . . . . . 11
⊢ (𝑓‘∅) ∈
V |
| 42 | 41 | elsn 4192 |
. . . . . . . . . 10
⊢ ((𝑓‘∅) ∈ {∅}
↔ (𝑓‘∅) =
∅) |
| 43 | 42 | notbii 310 |
. . . . . . . . 9
⊢ (¬
(𝑓‘∅) ∈
{∅} ↔ ¬ (𝑓‘∅) = ∅) |
| 44 | | neq0 3930 |
. . . . . . . . 9
⊢ (¬
(𝑓‘∅) = ∅
↔ ∃𝑐 𝑐 ∈ (𝑓‘∅)) |
| 45 | 43, 44 | bitr2i 265 |
. . . . . . . 8
⊢
(∃𝑐 𝑐 ∈ (𝑓‘∅) ↔ ¬ (𝑓‘∅) ∈
{∅}) |
| 46 | 40, 45 | sylibr 224 |
. . . . . . 7
⊢ ((𝑓‘∅) ∈ 𝐴 → ∃𝑐 𝑐 ∈ (𝑓‘∅)) |
| 47 | 38, 46 | syl 17 |
. . . . . 6
⊢ (𝑓:ω–1-1-onto→𝐴 → ∃𝑐 𝑐 ∈ (𝑓‘∅)) |
| 48 | | elunii 4441 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ (𝑓‘∅) ∧ (𝑓‘∅) ∈ 𝐴) → 𝑐 ∈ ∪ 𝐴) |
| 49 | 38, 48 | sylan2 491 |
. . . . . . . . . 10
⊢ ((𝑐 ∈ (𝑓‘∅) ∧ 𝑓:ω–1-1-onto→𝐴) → 𝑐 ∈ ∪ 𝐴) |
| 50 | 35 | ffvelrnda 6359 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:ω–1-1-onto→𝐴 ∧ 𝑛 ∈ ω) → (𝑓‘𝑛) ∈ 𝐴) |
| 51 | | difabs 3892 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∖ {∅}) ∖
{∅}) = (𝑥 ∖
{∅}) |
| 52 | 2 | difeq1i 3724 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∖ {∅}) = ((𝑥 ∖ {∅}) ∖
{∅}) |
| 53 | 51, 52, 2 | 3eqtr4i 2654 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∖ {∅}) = 𝐴 |
| 54 | | pwuni 4474 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
| 55 | | ssdif 3745 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ⊆ 𝒫 ∪ 𝐴
→ (𝐴 ∖
{∅}) ⊆ (𝒫 ∪ 𝐴 ∖ {∅})) |
| 56 | 54, 55 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∖ {∅}) ⊆
(𝒫 ∪ 𝐴 ∖ {∅}) |
| 57 | 53, 56 | eqsstr3i 3636 |
. . . . . . . . . . . . . . . 16
⊢ 𝐴 ⊆ (𝒫 ∪ 𝐴
∖ {∅}) |
| 58 | 57 | sseli 3599 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓‘𝑛) ∈ 𝐴 → (𝑓‘𝑛) ∈ (𝒫 ∪ 𝐴
∖ {∅})) |
| 59 | 58 | ralrimivw 2967 |
. . . . . . . . . . . . . 14
⊢ ((𝑓‘𝑛) ∈ 𝐴 → ∀𝑦 ∈ ∪ 𝐴(𝑓‘𝑛) ∈ (𝒫 ∪ 𝐴
∖ {∅})) |
| 60 | 50, 59 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑓:ω–1-1-onto→𝐴 ∧ 𝑛 ∈ ω) → ∀𝑦 ∈ ∪ 𝐴(𝑓‘𝑛) ∈ (𝒫 ∪ 𝐴
∖ {∅})) |
| 61 | 60 | ralrimiva 2966 |
. . . . . . . . . . . 12
⊢ (𝑓:ω–1-1-onto→𝐴 → ∀𝑛 ∈ ω ∀𝑦 ∈ ∪ 𝐴(𝑓‘𝑛) ∈ (𝒫 ∪ 𝐴
∖ {∅})) |
| 62 | | axcclem.2 |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑛 ∈ ω, 𝑦 ∈ ∪ 𝐴 ↦ (𝑓‘𝑛)) |
| 63 | 62 | fmpt2 7237 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
ω ∀𝑦 ∈
∪ 𝐴(𝑓‘𝑛) ∈ (𝒫 ∪ 𝐴
∖ {∅}) ↔ 𝐹:(ω × ∪ 𝐴)⟶(𝒫 ∪ 𝐴
∖ {∅})) |
| 64 | 61, 63 | sylib 208 |
. . . . . . . . . . 11
⊢ (𝑓:ω–1-1-onto→𝐴 → 𝐹:(ω × ∪ 𝐴)⟶(𝒫 ∪ 𝐴
∖ {∅})) |
| 65 | 64 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑐 ∈ (𝑓‘∅) ∧ 𝑓:ω–1-1-onto→𝐴) → 𝐹:(ω × ∪ 𝐴)⟶(𝒫 ∪ 𝐴
∖ {∅})) |
| 66 | | difexg 4808 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ V → (𝑥 ∖ {∅}) ∈
V) |
| 67 | 23, 66 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∖ {∅}) ∈
V |
| 68 | 2, 67 | eqeltri 2697 |
. . . . . . . . . . . 12
⊢ 𝐴 ∈ V |
| 69 | 68 | uniex 6953 |
. . . . . . . . . . 11
⊢ ∪ 𝐴
∈ V |
| 70 | 69 | axdc4 9278 |
. . . . . . . . . 10
⊢ ((𝑐 ∈ ∪ 𝐴
∧ 𝐹:(ω ×
∪ 𝐴)⟶(𝒫 ∪ 𝐴
∖ {∅})) → ∃ℎ(ℎ:ω⟶∪
𝐴 ∧ (ℎ‘∅) = 𝑐 ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)))) |
| 71 | 49, 65, 70 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝑐 ∈ (𝑓‘∅) ∧ 𝑓:ω–1-1-onto→𝐴) → ∃ℎ(ℎ:ω⟶∪
𝐴 ∧ (ℎ‘∅) = 𝑐 ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)))) |
| 72 | | 3simpb 1059 |
. . . . . . . . . 10
⊢ ((ℎ:ω⟶∪ 𝐴
∧ (ℎ‘∅) =
𝑐 ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘))) → (ℎ:ω⟶∪
𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)))) |
| 73 | 72 | eximi 1762 |
. . . . . . . . 9
⊢
(∃ℎ(ℎ:ω⟶∪ 𝐴
∧ (ℎ‘∅) =
𝑐 ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘))) → ∃ℎ(ℎ:ω⟶∪
𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)))) |
| 74 | 71, 73 | syl 17 |
. . . . . . . 8
⊢ ((𝑐 ∈ (𝑓‘∅) ∧ 𝑓:ω–1-1-onto→𝐴) → ∃ℎ(ℎ:ω⟶∪
𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)))) |
| 75 | 74 | ex 450 |
. . . . . . 7
⊢ (𝑐 ∈ (𝑓‘∅) → (𝑓:ω–1-1-onto→𝐴 → ∃ℎ(ℎ:ω⟶∪
𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘))))) |
| 76 | 75 | exlimiv 1858 |
. . . . . 6
⊢
(∃𝑐 𝑐 ∈ (𝑓‘∅) → (𝑓:ω–1-1-onto→𝐴 → ∃ℎ(ℎ:ω⟶∪
𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘))))) |
| 77 | 47, 76 | mpcom 38 |
. . . . 5
⊢ (𝑓:ω–1-1-onto→𝐴 → ∃ℎ(ℎ:ω⟶∪
𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)))) |
| 78 | | velsn 4193 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ {∅} ↔ 𝑧 = ∅) |
| 79 | 78 | necon3bbii 2841 |
. . . . . . . . . 10
⊢ (¬
𝑧 ∈ {∅} ↔
𝑧 ≠
∅) |
| 80 | 2 | eleq2i 2693 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ (𝑥 ∖ {∅})) |
| 81 | | eldif 3584 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝑥 ∖ {∅}) ↔ (𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ {∅})) |
| 82 | 80, 81 | sylbbr 226 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ {∅}) → 𝑧 ∈ 𝐴) |
| 83 | 79, 82 | sylan2br 493 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅) → 𝑧 ∈ 𝐴) |
| 84 | | simpl 473 |
. . . . . . . . . . . 12
⊢ ((𝑓:ω–1-1-onto→𝐴 ∧ 𝑧 ∈ 𝐴) → 𝑓:ω–1-1-onto→𝐴) |
| 85 | | f1ofo 6144 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ω–1-1-onto→𝐴 → 𝑓:ω–onto→𝐴) |
| 86 | | foelrn 6378 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:ω–onto→𝐴 ∧ 𝑧 ∈ 𝐴) → ∃𝑖 ∈ ω 𝑧 = (𝑓‘𝑖)) |
| 87 | 85, 86 | sylan 488 |
. . . . . . . . . . . . 13
⊢ ((𝑓:ω–1-1-onto→𝐴 ∧ 𝑧 ∈ 𝐴) → ∃𝑖 ∈ ω 𝑧 = (𝑓‘𝑖)) |
| 88 | | suceq 5790 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 = 𝑖 → suc 𝑘 = suc 𝑖) |
| 89 | 88 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 𝑖 → (ℎ‘suc 𝑘) = (ℎ‘suc 𝑖)) |
| 90 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 = 𝑖 → 𝑘 = 𝑖) |
| 91 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 = 𝑖 → (ℎ‘𝑘) = (ℎ‘𝑖)) |
| 92 | 90, 91 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 𝑖 → (𝑘𝐹(ℎ‘𝑘)) = (𝑖𝐹(ℎ‘𝑖))) |
| 93 | 89, 92 | eleq12d 2695 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝑖 → ((ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) ↔ (ℎ‘suc 𝑖) ∈ (𝑖𝐹(ℎ‘𝑖)))) |
| 94 | 93 | rspcv 3305 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ ω →
(∀𝑘 ∈ ω
(ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) → (ℎ‘suc 𝑖) ∈ (𝑖𝐹(ℎ‘𝑖)))) |
| 95 | 94 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) → (∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) → (ℎ‘suc 𝑖) ∈ (𝑖𝐹(ℎ‘𝑖)))) |
| 96 | 95 | imp 445 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘))) → (ℎ‘suc 𝑖) ∈ (𝑖𝐹(ℎ‘𝑖))) |
| 97 | 96 | 3adant3 1081 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) ∧ 𝑧 = (𝑓‘𝑖)) → (ℎ‘suc 𝑖) ∈ (𝑖𝐹(ℎ‘𝑖))) |
| 98 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = (𝑓‘𝑖) ↔ (𝑓‘𝑖) = 𝑧) |
| 99 | | f1ocnvfv 6534 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) → ((𝑓‘𝑖) = 𝑧 → (◡𝑓‘𝑧) = 𝑖)) |
| 100 | 98, 99 | syl5bi 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) → (𝑧 = (𝑓‘𝑖) → (◡𝑓‘𝑧) = 𝑖)) |
| 101 | 100 | 3adant1 1079 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) → (𝑧 = (𝑓‘𝑖) → (◡𝑓‘𝑧) = 𝑖)) |
| 102 | 101 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) ∧ 𝑧 = (𝑓‘𝑖)) → (◡𝑓‘𝑧) = 𝑖) |
| 103 | 102 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) ∧ 𝑧 = (𝑓‘𝑖)) → 𝑖 = (◡𝑓‘𝑧)) |
| 104 | 103 | 3adant2 1080 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) ∧ 𝑧 = (𝑓‘𝑖)) → 𝑖 = (◡𝑓‘𝑧)) |
| 105 | | suceq 5790 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = (◡𝑓‘𝑧) → suc 𝑖 = suc (◡𝑓‘𝑧)) |
| 106 | 104, 105 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) ∧ 𝑧 = (𝑓‘𝑖)) → suc 𝑖 = suc (◡𝑓‘𝑧)) |
| 107 | 106 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) ∧ 𝑧 = (𝑓‘𝑖)) → (ℎ‘suc 𝑖) = (ℎ‘suc (◡𝑓‘𝑧))) |
| 108 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((ℎ:ω⟶∪ 𝐴
∧ 𝑖 ∈ ω)
→ 𝑖 ∈
ω) |
| 109 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((ℎ:ω⟶∪ 𝐴
∧ 𝑖 ∈ ω)
→ (ℎ‘𝑖) ∈ ∪ 𝐴) |
| 110 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑖 → (𝑓‘𝑛) = (𝑓‘𝑖)) |
| 111 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = (ℎ‘𝑖) → (𝑓‘𝑖) = (𝑓‘𝑖)) |
| 112 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓‘𝑖) ∈ V |
| 113 | 110, 111,
62, 112 | ovmpt2 6796 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ ω ∧ (ℎ‘𝑖) ∈ ∪ 𝐴) → (𝑖𝐹(ℎ‘𝑖)) = (𝑓‘𝑖)) |
| 114 | 108, 109,
113 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℎ:ω⟶∪ 𝐴
∧ 𝑖 ∈ ω)
→ (𝑖𝐹(ℎ‘𝑖)) = (𝑓‘𝑖)) |
| 115 | 114 | 3adant2 1080 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) → (𝑖𝐹(ℎ‘𝑖)) = (𝑓‘𝑖)) |
| 116 | 115 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) ∧ 𝑧 = (𝑓‘𝑖)) → (𝑖𝐹(ℎ‘𝑖)) = (𝑓‘𝑖)) |
| 117 | 97, 107, 116 | 3eltr3d 2715 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) ∧ 𝑧 = (𝑓‘𝑖)) → (ℎ‘suc (◡𝑓‘𝑧)) ∈ (𝑓‘𝑖)) |
| 118 | 35 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) → (𝑓‘𝑖) ∈ 𝐴) |
| 119 | 118 | 3adant1 1079 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) → (𝑓‘𝑖) ∈ 𝐴) |
| 120 | 119 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) ∧ 𝑧 = (𝑓‘𝑖)) → (𝑓‘𝑖) ∈ 𝐴) |
| 121 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = (𝑓‘𝑖) → (𝑧 ∈ 𝐴 ↔ (𝑓‘𝑖) ∈ 𝐴)) |
| 122 | 121 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) ∧ 𝑧 = (𝑓‘𝑖)) → (𝑧 ∈ 𝐴 ↔ (𝑓‘𝑖) ∈ 𝐴)) |
| 123 | 120, 122 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) ∧ 𝑧 = (𝑓‘𝑖)) → 𝑧 ∈ 𝐴) |
| 124 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑧 → (◡𝑓‘𝑤) = (◡𝑓‘𝑧)) |
| 125 | | suceq 5790 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((◡𝑓‘𝑤) = (◡𝑓‘𝑧) → suc (◡𝑓‘𝑤) = suc (◡𝑓‘𝑧)) |
| 126 | 124, 125 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = 𝑧 → suc (◡𝑓‘𝑤) = suc (◡𝑓‘𝑧)) |
| 127 | 126 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑧 → (ℎ‘suc (◡𝑓‘𝑤)) = (ℎ‘suc (◡𝑓‘𝑧))) |
| 128 | | axcclem.3 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐺 = (𝑤 ∈ 𝐴 ↦ (ℎ‘suc (◡𝑓‘𝑤))) |
| 129 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ‘suc (◡𝑓‘𝑧)) ∈ V |
| 130 | 127, 128,
129 | fvmpt 6282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝐴 → (𝐺‘𝑧) = (ℎ‘suc (◡𝑓‘𝑧))) |
| 131 | 123, 130 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) ∧ 𝑧 = (𝑓‘𝑖)) → (𝐺‘𝑧) = (ℎ‘suc (◡𝑓‘𝑧))) |
| 132 | | simp3 1063 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) ∧ 𝑧 = (𝑓‘𝑖)) → 𝑧 = (𝑓‘𝑖)) |
| 133 | 117, 131,
132 | 3eltr4d 2716 |
. . . . . . . . . . . . . . . . . 18
⊢ (((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) ∧ 𝑧 = (𝑓‘𝑖)) → (𝐺‘𝑧) ∈ 𝑧) |
| 134 | 133 | 3exp 1264 |
. . . . . . . . . . . . . . . . 17
⊢ ((ℎ:ω⟶∪ 𝐴
∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) → (∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) → (𝑧 = (𝑓‘𝑖) → (𝐺‘𝑧) ∈ 𝑧))) |
| 135 | 134 | com3r 87 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑓‘𝑖) → ((ℎ:ω⟶∪
𝐴 ∧ 𝑓:ω–1-1-onto→𝐴 ∧ 𝑖 ∈ ω) → (∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) → (𝐺‘𝑧) ∈ 𝑧))) |
| 136 | 135 | 3expd 1284 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑓‘𝑖) → (ℎ:ω⟶∪
𝐴 → (𝑓:ω–1-1-onto→𝐴 → (𝑖 ∈ ω → (∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) → (𝐺‘𝑧) ∈ 𝑧))))) |
| 137 | 136 | com4r 94 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ω → (𝑧 = (𝑓‘𝑖) → (ℎ:ω⟶∪
𝐴 → (𝑓:ω–1-1-onto→𝐴 → (∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) → (𝐺‘𝑧) ∈ 𝑧))))) |
| 138 | 137 | rexlimiv 3027 |
. . . . . . . . . . . . 13
⊢
(∃𝑖 ∈
ω 𝑧 = (𝑓‘𝑖) → (ℎ:ω⟶∪
𝐴 → (𝑓:ω–1-1-onto→𝐴 → (∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) → (𝐺‘𝑧) ∈ 𝑧)))) |
| 139 | 87, 138 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑓:ω–1-1-onto→𝐴 ∧ 𝑧 ∈ 𝐴) → (ℎ:ω⟶∪
𝐴 → (𝑓:ω–1-1-onto→𝐴 → (∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) → (𝐺‘𝑧) ∈ 𝑧)))) |
| 140 | 84, 139 | mpid 44 |
. . . . . . . . . . 11
⊢ ((𝑓:ω–1-1-onto→𝐴 ∧ 𝑧 ∈ 𝐴) → (ℎ:ω⟶∪
𝐴 → (∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)) → (𝐺‘𝑧) ∈ 𝑧))) |
| 141 | 140 | impd 447 |
. . . . . . . . . 10
⊢ ((𝑓:ω–1-1-onto→𝐴 ∧ 𝑧 ∈ 𝐴) → ((ℎ:ω⟶∪
𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘))) → (𝐺‘𝑧) ∈ 𝑧)) |
| 142 | 141 | impancom 456 |
. . . . . . . . 9
⊢ ((𝑓:ω–1-1-onto→𝐴 ∧ (ℎ:ω⟶∪
𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)))) → (𝑧 ∈ 𝐴 → (𝐺‘𝑧) ∈ 𝑧)) |
| 143 | 83, 142 | syl5 34 |
. . . . . . . 8
⊢ ((𝑓:ω–1-1-onto→𝐴 ∧ (ℎ:ω⟶∪
𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)))) → ((𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅) → (𝐺‘𝑧) ∈ 𝑧)) |
| 144 | 143 | expd 452 |
. . . . . . 7
⊢ ((𝑓:ω–1-1-onto→𝐴 ∧ (ℎ:ω⟶∪
𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)))) → (𝑧 ∈ 𝑥 → (𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧))) |
| 145 | 144 | ralrimiv 2965 |
. . . . . 6
⊢ ((𝑓:ω–1-1-onto→𝐴 ∧ (ℎ:ω⟶∪
𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)))) → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧)) |
| 146 | | fvrn0 6216 |
. . . . . . . . . . 11
⊢ (ℎ‘suc (◡𝑓‘𝑤)) ∈ (ran ℎ ∪ {∅}) |
| 147 | 146 | rgenw 2924 |
. . . . . . . . . 10
⊢
∀𝑤 ∈
𝐴 (ℎ‘suc (◡𝑓‘𝑤)) ∈ (ran ℎ ∪ {∅}) |
| 148 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝐴 ↦ (ℎ‘suc (◡𝑓‘𝑤))) = (𝑤 ∈ 𝐴 ↦ (ℎ‘suc (◡𝑓‘𝑤))) |
| 149 | 148 | fmpt 6381 |
. . . . . . . . . 10
⊢
(∀𝑤 ∈
𝐴 (ℎ‘suc (◡𝑓‘𝑤)) ∈ (ran ℎ ∪ {∅}) ↔ (𝑤 ∈ 𝐴 ↦ (ℎ‘suc (◡𝑓‘𝑤))):𝐴⟶(ran ℎ ∪ {∅})) |
| 150 | 147, 149 | mpbi 220 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝐴 ↦ (ℎ‘suc (◡𝑓‘𝑤))):𝐴⟶(ran ℎ ∪ {∅}) |
| 151 | | vex 3203 |
. . . . . . . . . . 11
⊢ ℎ ∈ V |
| 152 | 151 | rnex 7100 |
. . . . . . . . . 10
⊢ ran ℎ ∈ V |
| 153 | | p0ex 4853 |
. . . . . . . . . 10
⊢ {∅}
∈ V |
| 154 | 152, 153 | unex 6956 |
. . . . . . . . 9
⊢ (ran
ℎ ∪ {∅}) ∈
V |
| 155 | | fex2 7121 |
. . . . . . . . 9
⊢ (((𝑤 ∈ 𝐴 ↦ (ℎ‘suc (◡𝑓‘𝑤))):𝐴⟶(ran ℎ ∪ {∅}) ∧ 𝐴 ∈ V ∧ (ran ℎ ∪ {∅}) ∈ V) → (𝑤 ∈ 𝐴 ↦ (ℎ‘suc (◡𝑓‘𝑤))) ∈ V) |
| 156 | 150, 68, 154, 155 | mp3an 1424 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝐴 ↦ (ℎ‘suc (◡𝑓‘𝑤))) ∈ V |
| 157 | 128, 156 | eqeltri 2697 |
. . . . . . 7
⊢ 𝐺 ∈ V |
| 158 | | fveq1 6190 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑔‘𝑧) = (𝐺‘𝑧)) |
| 159 | 158 | eleq1d 2686 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((𝑔‘𝑧) ∈ 𝑧 ↔ (𝐺‘𝑧) ∈ 𝑧)) |
| 160 | 159 | imbi2d 330 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧))) |
| 161 | 160 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧))) |
| 162 | 157, 161 | spcev 3300 |
. . . . . 6
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧) → ∃𝑔∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) |
| 163 | 145, 162 | syl 17 |
. . . . 5
⊢ ((𝑓:ω–1-1-onto→𝐴 ∧ (ℎ:ω⟶∪
𝐴 ∧ ∀𝑘 ∈ ω (ℎ‘suc 𝑘) ∈ (𝑘𝐹(ℎ‘𝑘)))) → ∃𝑔∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) |
| 164 | 77, 163 | exlimddv 1863 |
. . . 4
⊢ (𝑓:ω–1-1-onto→𝐴 → ∃𝑔∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) |
| 165 | 164 | exlimiv 1858 |
. . 3
⊢
(∃𝑓 𝑓:ω–1-1-onto→𝐴 → ∃𝑔∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) |
| 166 | 34, 165 | sylbi 207 |
. 2
⊢ (ω
≈ 𝐴 →
∃𝑔∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) |
| 167 | 32, 33, 166 | 3syl 18 |
1
⊢ (𝑥 ≈ ω →
∃𝑔∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑔‘𝑧) ∈ 𝑧)) |