Step | Hyp | Ref
| Expression |
1 | | sdomdom 7983 |
. . 3
⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
2 | | brdomi 7966 |
. . 3
⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝐴 ≺ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
4 | | relsdom 7962 |
. . . . . . 7
⊢ Rel
≺ |
5 | 4 | brrelexi 5158 |
. . . . . 6
⊢ (𝐴 ≺ 𝐵 → 𝐴 ∈ V) |
6 | 5 | adantr 481 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝐴 ∈ V) |
7 | | vex 3203 |
. . . . . . 7
⊢ 𝑓 ∈ V |
8 | 7 | rnex 7100 |
. . . . . 6
⊢ ran 𝑓 ∈ V |
9 | 8 | a1i 11 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ran 𝑓 ∈ V) |
10 | | f1f1orn 6148 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴–1-1-onto→ran
𝑓) |
11 | 10 | adantl 482 |
. . . . . 6
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝑓:𝐴–1-1-onto→ran
𝑓) |
12 | | f1of1 6136 |
. . . . . 6
⊢ (𝑓:𝐴–1-1-onto→ran
𝑓 → 𝑓:𝐴–1-1→ran 𝑓) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝑓:𝐴–1-1→ran 𝑓) |
14 | | f1dom2g 7973 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ ran 𝑓 ∈ V ∧ 𝑓:𝐴–1-1→ran 𝑓) → 𝐴 ≼ ran 𝑓) |
15 | 6, 9, 13, 14 | syl3anc 1326 |
. . . 4
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝐴 ≼ ran 𝑓) |
16 | | sdomnen 7984 |
. . . . . . . 8
⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
17 | 16 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ¬ 𝐴 ≈ 𝐵) |
18 | | ssdif0 3942 |
. . . . . . . 8
⊢ (𝐵 ⊆ ran 𝑓 ↔ (𝐵 ∖ ran 𝑓) = ∅) |
19 | | simplr 792 |
. . . . . . . . . . 11
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝑓:𝐴–1-1→𝐵) |
20 | | f1f 6101 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴⟶𝐵) |
21 | | df-f 5892 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝐴⟶𝐵 ↔ (𝑓 Fn 𝐴 ∧ ran 𝑓 ⊆ 𝐵)) |
22 | 20, 21 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝐴–1-1→𝐵 → (𝑓 Fn 𝐴 ∧ ran 𝑓 ⊆ 𝐵)) |
23 | 22 | simprd 479 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝐴–1-1→𝐵 → ran 𝑓 ⊆ 𝐵) |
24 | 19, 23 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → ran 𝑓 ⊆ 𝐵) |
25 | | simpr 477 |
. . . . . . . . . . . 12
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝐵 ⊆ ran 𝑓) |
26 | 24, 25 | eqssd 3620 |
. . . . . . . . . . 11
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → ran 𝑓 = 𝐵) |
27 | | dff1o5 6146 |
. . . . . . . . . . 11
⊢ (𝑓:𝐴–1-1-onto→𝐵 ↔ (𝑓:𝐴–1-1→𝐵 ∧ ran 𝑓 = 𝐵)) |
28 | 19, 26, 27 | sylanbrc 698 |
. . . . . . . . . 10
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝑓:𝐴–1-1-onto→𝐵) |
29 | | f1oen3g 7971 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ V ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
30 | 7, 28, 29 | sylancr 695 |
. . . . . . . . 9
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝐴 ≈ 𝐵) |
31 | 30 | ex 450 |
. . . . . . . 8
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (𝐵 ⊆ ran 𝑓 → 𝐴 ≈ 𝐵)) |
32 | 18, 31 | syl5bir 233 |
. . . . . . 7
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ((𝐵 ∖ ran 𝑓) = ∅ → 𝐴 ≈ 𝐵)) |
33 | 17, 32 | mtod 189 |
. . . . . 6
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ¬ (𝐵 ∖ ran 𝑓) = ∅) |
34 | | neq0 3930 |
. . . . . 6
⊢ (¬
(𝐵 ∖ ran 𝑓) = ∅ ↔ ∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓)) |
35 | 33, 34 | sylib 208 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓)) |
36 | | snssi 4339 |
. . . . . . 7
⊢ (𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝑤} ⊆ (𝐵 ∖ ran 𝑓)) |
37 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
38 | | en2sn 8037 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ 𝑤 ∈ V) → {𝐴} ≈ {𝑤}) |
39 | 6, 37, 38 | sylancl 694 |
. . . . . . . 8
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → {𝐴} ≈ {𝑤}) |
40 | 4 | brrelex2i 5159 |
. . . . . . . . . 10
⊢ (𝐴 ≺ 𝐵 → 𝐵 ∈ V) |
41 | 40 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝐵 ∈ V) |
42 | | difexg 4808 |
. . . . . . . . 9
⊢ (𝐵 ∈ V → (𝐵 ∖ ran 𝑓) ∈ V) |
43 | | ssdomg 8001 |
. . . . . . . . 9
⊢ ((𝐵 ∖ ran 𝑓) ∈ V → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝑤} ≼ (𝐵 ∖ ran 𝑓))) |
44 | 41, 42, 43 | 3syl 18 |
. . . . . . . 8
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝑤} ≼ (𝐵 ∖ ran 𝑓))) |
45 | | endomtr 8014 |
. . . . . . . 8
⊢ (({𝐴} ≈ {𝑤} ∧ {𝑤} ≼ (𝐵 ∖ ran 𝑓)) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)) |
46 | 39, 44, 45 | syl6an 568 |
. . . . . . 7
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))) |
47 | 36, 46 | syl5 34 |
. . . . . 6
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))) |
48 | 47 | exlimdv 1861 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))) |
49 | 35, 48 | mpd 15 |
. . . 4
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)) |
50 | | disjdif 4040 |
. . . . 5
⊢ (ran
𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅ |
51 | 50 | a1i 11 |
. . . 4
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅) |
52 | | undom 8048 |
. . . 4
⊢ (((𝐴 ≼ ran 𝑓 ∧ {𝐴} ≼ (𝐵 ∖ ran 𝑓)) ∧ (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅) → (𝐴 ∪ {𝐴}) ≼ (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓))) |
53 | 15, 49, 51, 52 | syl21anc 1325 |
. . 3
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (𝐴 ∪ {𝐴}) ≼ (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓))) |
54 | | df-suc 5729 |
. . . 4
⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) |
55 | 54 | a1i 11 |
. . 3
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → suc 𝐴 = (𝐴 ∪ {𝐴})) |
56 | | undif2 4044 |
. . . 4
⊢ (ran
𝑓 ∪ (𝐵 ∖ ran 𝑓)) = (ran 𝑓 ∪ 𝐵) |
57 | 23 | adantl 482 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ran 𝑓 ⊆ 𝐵) |
58 | | ssequn1 3783 |
. . . . 5
⊢ (ran
𝑓 ⊆ 𝐵 ↔ (ran 𝑓 ∪ 𝐵) = 𝐵) |
59 | 57, 58 | sylib 208 |
. . . 4
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (ran 𝑓 ∪ 𝐵) = 𝐵) |
60 | 56, 59 | syl5req 2669 |
. . 3
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝐵 = (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓))) |
61 | 53, 55, 60 | 3brtr4d 4685 |
. 2
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → suc 𝐴 ≼ 𝐵) |
62 | 3, 61 | exlimddv 1863 |
1
⊢ (𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵) |