MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin4-3 Structured version   Visualization version   GIF version

Theorem isfin4-3 9137
Description: Alternate definition of IV-finite sets: they are strictly dominated by their successors. (Thus, the proper subset referred to in isfin4 9119 can be assumed to be only a singleton smaller than the original.) (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
isfin4-3 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 +𝑐 1𝑜))

Proof of Theorem isfin4-3
StepHypRef Expression
1 1on 7567 . . . 4 1𝑜 ∈ On
2 cdadom3 9010 . . . 4 ((𝐴 ∈ FinIV ∧ 1𝑜 ∈ On) → 𝐴 ≼ (𝐴 +𝑐 1𝑜))
31, 2mpan2 707 . . 3 (𝐴 ∈ FinIV𝐴 ≼ (𝐴 +𝑐 1𝑜))
4 ssun1 3776 . . . . . . . 8 (𝐴 × {∅}) ⊆ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜}))
5 relen 7960 . . . . . . . . . 10 Rel ≈
65brrelexi 5158 . . . . . . . . 9 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → 𝐴 ∈ V)
7 cdaval 8992 . . . . . . . . 9 ((𝐴 ∈ V ∧ 1𝑜 ∈ On) → (𝐴 +𝑐 1𝑜) = ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
86, 1, 7sylancl 694 . . . . . . . 8 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → (𝐴 +𝑐 1𝑜) = ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
94, 8syl5sseqr 3654 . . . . . . 7 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → (𝐴 × {∅}) ⊆ (𝐴 +𝑐 1𝑜))
10 0lt1o 7584 . . . . . . . . . 10 ∅ ∈ 1𝑜
111elexi 3213 . . . . . . . . . . 11 1𝑜 ∈ V
1211snid 4208 . . . . . . . . . 10 1𝑜 ∈ {1𝑜}
13 opelxpi 5148 . . . . . . . . . 10 ((∅ ∈ 1𝑜 ∧ 1𝑜 ∈ {1𝑜}) → ⟨∅, 1𝑜⟩ ∈ (1𝑜 × {1𝑜}))
1410, 12, 13mp2an 708 . . . . . . . . 9 ⟨∅, 1𝑜⟩ ∈ (1𝑜 × {1𝑜})
15 elun2 3781 . . . . . . . . 9 (⟨∅, 1𝑜⟩ ∈ (1𝑜 × {1𝑜}) → ⟨∅, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
1614, 15mp1i 13 . . . . . . . 8 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → ⟨∅, 1𝑜⟩ ∈ ((𝐴 × {∅}) ∪ (1𝑜 × {1𝑜})))
1716, 8eleqtrrd 2704 . . . . . . 7 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → ⟨∅, 1𝑜⟩ ∈ (𝐴 +𝑐 1𝑜))
18 1n0 7575 . . . . . . . 8 1𝑜 ≠ ∅
19 opelxp2 5151 . . . . . . . . . 10 (⟨∅, 1𝑜⟩ ∈ (𝐴 × {∅}) → 1𝑜 ∈ {∅})
20 elsni 4194 . . . . . . . . . 10 (1𝑜 ∈ {∅} → 1𝑜 = ∅)
2119, 20syl 17 . . . . . . . . 9 (⟨∅, 1𝑜⟩ ∈ (𝐴 × {∅}) → 1𝑜 = ∅)
2221necon3ai 2819 . . . . . . . 8 (1𝑜 ≠ ∅ → ¬ ⟨∅, 1𝑜⟩ ∈ (𝐴 × {∅}))
2318, 22mp1i 13 . . . . . . 7 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → ¬ ⟨∅, 1𝑜⟩ ∈ (𝐴 × {∅}))
249, 17, 23ssnelpssd 3719 . . . . . 6 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → (𝐴 × {∅}) ⊊ (𝐴 +𝑐 1𝑜))
25 0ex 4790 . . . . . . . 8 ∅ ∈ V
26 xpsneng 8045 . . . . . . . 8 ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
276, 25, 26sylancl 694 . . . . . . 7 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → (𝐴 × {∅}) ≈ 𝐴)
28 entr 8008 . . . . . . 7 (((𝐴 × {∅}) ≈ 𝐴𝐴 ≈ (𝐴 +𝑐 1𝑜)) → (𝐴 × {∅}) ≈ (𝐴 +𝑐 1𝑜))
2927, 28mpancom 703 . . . . . 6 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → (𝐴 × {∅}) ≈ (𝐴 +𝑐 1𝑜))
30 fin4i 9120 . . . . . 6 (((𝐴 × {∅}) ⊊ (𝐴 +𝑐 1𝑜) ∧ (𝐴 × {∅}) ≈ (𝐴 +𝑐 1𝑜)) → ¬ (𝐴 +𝑐 1𝑜) ∈ FinIV)
3124, 29, 30syl2anc 693 . . . . 5 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → ¬ (𝐴 +𝑐 1𝑜) ∈ FinIV)
32 fin4en1 9131 . . . . 5 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → (𝐴 ∈ FinIV → (𝐴 +𝑐 1𝑜) ∈ FinIV))
3331, 32mtod 189 . . . 4 (𝐴 ≈ (𝐴 +𝑐 1𝑜) → ¬ 𝐴 ∈ FinIV)
3433con2i 134 . . 3 (𝐴 ∈ FinIV → ¬ 𝐴 ≈ (𝐴 +𝑐 1𝑜))
35 brsdom 7978 . . 3 (𝐴 ≺ (𝐴 +𝑐 1𝑜) ↔ (𝐴 ≼ (𝐴 +𝑐 1𝑜) ∧ ¬ 𝐴 ≈ (𝐴 +𝑐 1𝑜)))
363, 34, 35sylanbrc 698 . 2 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 +𝑐 1𝑜))
37 sdomnen 7984 . . . 4 (𝐴 ≺ (𝐴 +𝑐 1𝑜) → ¬ 𝐴 ≈ (𝐴 +𝑐 1𝑜))
38 infcda1 9015 . . . . 5 (ω ≼ 𝐴 → (𝐴 +𝑐 1𝑜) ≈ 𝐴)
3938ensymd 8007 . . . 4 (ω ≼ 𝐴𝐴 ≈ (𝐴 +𝑐 1𝑜))
4037, 39nsyl 135 . . 3 (𝐴 ≺ (𝐴 +𝑐 1𝑜) → ¬ ω ≼ 𝐴)
41 relsdom 7962 . . . . 5 Rel ≺
4241brrelexi 5158 . . . 4 (𝐴 ≺ (𝐴 +𝑐 1𝑜) → 𝐴 ∈ V)
43 isfin4-2 9136 . . . 4 (𝐴 ∈ V → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))
4442, 43syl 17 . . 3 (𝐴 ≺ (𝐴 +𝑐 1𝑜) → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴))
4540, 44mpbird 247 . 2 (𝐴 ≺ (𝐴 +𝑐 1𝑜) → 𝐴 ∈ FinIV)
4636, 45impbii 199 1 (𝐴 ∈ FinIV𝐴 ≺ (𝐴 +𝑐 1𝑜))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  cun 3572  wpss 3575  c0 3915  {csn 4177  cop 4183   class class class wbr 4653   × cxp 5112  Oncon0 5723  (class class class)co 6650  ωcom 7065  1𝑜c1o 7553  cen 7952  cdom 7953  csdm 7954   +𝑐 ccda 8989  FinIVcfin4 9102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-cda 8990  df-fin4 9109
This theorem is referenced by:  fin45  9214  finngch  9477  gchinf  9479
  Copyright terms: Public domain W3C validator