| Step | Hyp | Ref
| Expression |
| 1 | | isfin6 9122 |
. 2
⊢ (𝐴 ∈ FinVI ↔
(𝐴 ≺
2𝑜 ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
| 2 | | 2onn 7720 |
. . . . . 6
⊢
2𝑜 ∈ ω |
| 3 | | ssid 3624 |
. . . . . 6
⊢
2𝑜 ⊆ 2𝑜 |
| 4 | | ssnnfi 8179 |
. . . . . 6
⊢
((2𝑜 ∈ ω ∧ 2𝑜
⊆ 2𝑜) → 2𝑜 ∈
Fin) |
| 5 | 2, 3, 4 | mp2an 708 |
. . . . 5
⊢
2𝑜 ∈ Fin |
| 6 | | sdomdom 7983 |
. . . . 5
⊢ (𝐴 ≺ 2𝑜
→ 𝐴 ≼
2𝑜) |
| 7 | | domfi 8181 |
. . . . 5
⊢
((2𝑜 ∈ Fin ∧ 𝐴 ≼ 2𝑜) → 𝐴 ∈ Fin) |
| 8 | 5, 6, 7 | sylancr 695 |
. . . 4
⊢ (𝐴 ≺ 2𝑜
→ 𝐴 ∈
Fin) |
| 9 | | fin17 9216 |
. . . 4
⊢ (𝐴 ∈ Fin → 𝐴 ∈
FinVII) |
| 10 | 8, 9 | syl 17 |
. . 3
⊢ (𝐴 ≺ 2𝑜
→ 𝐴 ∈
FinVII) |
| 11 | | sdomnen 7984 |
. . . . 5
⊢ (𝐴 ≺ (𝐴 × 𝐴) → ¬ 𝐴 ≈ (𝐴 × 𝐴)) |
| 12 | | eldifi 3732 |
. . . . . . . . 9
⊢ (𝑏 ∈ (On ∖ ω)
→ 𝑏 ∈
On) |
| 13 | | ensym 8005 |
. . . . . . . . 9
⊢ (𝐴 ≈ 𝑏 → 𝑏 ≈ 𝐴) |
| 14 | | isnumi 8772 |
. . . . . . . . 9
⊢ ((𝑏 ∈ On ∧ 𝑏 ≈ 𝐴) → 𝐴 ∈ dom card) |
| 15 | 12, 13, 14 | syl2an 494 |
. . . . . . . 8
⊢ ((𝑏 ∈ (On ∖ ω)
∧ 𝐴 ≈ 𝑏) → 𝐴 ∈ dom card) |
| 16 | | vex 3203 |
. . . . . . . . . . 11
⊢ 𝑏 ∈ V |
| 17 | | eldif 3584 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ (On ∖ ω)
↔ (𝑏 ∈ On ∧
¬ 𝑏 ∈
ω)) |
| 18 | | ordom 7074 |
. . . . . . . . . . . . . 14
⊢ Ord
ω |
| 19 | | eloni 5733 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ On → Ord 𝑏) |
| 20 | | ordtri1 5756 |
. . . . . . . . . . . . . 14
⊢ ((Ord
ω ∧ Ord 𝑏) →
(ω ⊆ 𝑏 ↔
¬ 𝑏 ∈
ω)) |
| 21 | 18, 19, 20 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ On → (ω
⊆ 𝑏 ↔ ¬
𝑏 ∈
ω)) |
| 22 | 21 | biimpar 502 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω) → ω
⊆ 𝑏) |
| 23 | 17, 22 | sylbi 207 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (On ∖ ω)
→ ω ⊆ 𝑏) |
| 24 | | ssdomg 8001 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ V → (ω
⊆ 𝑏 → ω
≼ 𝑏)) |
| 25 | 16, 23, 24 | mpsyl 68 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (On ∖ ω)
→ ω ≼ 𝑏) |
| 26 | | domen2 8103 |
. . . . . . . . . 10
⊢ (𝐴 ≈ 𝑏 → (ω ≼ 𝐴 ↔ ω ≼ 𝑏)) |
| 27 | 25, 26 | syl5ibr 236 |
. . . . . . . . 9
⊢ (𝐴 ≈ 𝑏 → (𝑏 ∈ (On ∖ ω) → ω
≼ 𝐴)) |
| 28 | 27 | impcom 446 |
. . . . . . . 8
⊢ ((𝑏 ∈ (On ∖ ω)
∧ 𝐴 ≈ 𝑏) → ω ≼ 𝐴) |
| 29 | | infxpidm2 8840 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) |
| 30 | 15, 28, 29 | syl2anc 693 |
. . . . . . 7
⊢ ((𝑏 ∈ (On ∖ ω)
∧ 𝐴 ≈ 𝑏) → (𝐴 × 𝐴) ≈ 𝐴) |
| 31 | | ensym 8005 |
. . . . . . 7
⊢ ((𝐴 × 𝐴) ≈ 𝐴 → 𝐴 ≈ (𝐴 × 𝐴)) |
| 32 | 30, 31 | syl 17 |
. . . . . 6
⊢ ((𝑏 ∈ (On ∖ ω)
∧ 𝐴 ≈ 𝑏) → 𝐴 ≈ (𝐴 × 𝐴)) |
| 33 | 32 | rexlimiva 3028 |
. . . . 5
⊢
(∃𝑏 ∈ (On
∖ ω)𝐴 ≈
𝑏 → 𝐴 ≈ (𝐴 × 𝐴)) |
| 34 | 11, 33 | nsyl 135 |
. . . 4
⊢ (𝐴 ≺ (𝐴 × 𝐴) → ¬ ∃𝑏 ∈ (On ∖ ω)𝐴 ≈ 𝑏) |
| 35 | | relsdom 7962 |
. . . . . 6
⊢ Rel
≺ |
| 36 | 35 | brrelexi 5158 |
. . . . 5
⊢ (𝐴 ≺ (𝐴 × 𝐴) → 𝐴 ∈ V) |
| 37 | | isfin7 9123 |
. . . . 5
⊢ (𝐴 ∈ V → (𝐴 ∈ FinVII ↔
¬ ∃𝑏 ∈ (On
∖ ω)𝐴 ≈
𝑏)) |
| 38 | 36, 37 | syl 17 |
. . . 4
⊢ (𝐴 ≺ (𝐴 × 𝐴) → (𝐴 ∈ FinVII ↔ ¬
∃𝑏 ∈ (On ∖
ω)𝐴 ≈ 𝑏)) |
| 39 | 34, 38 | mpbird 247 |
. . 3
⊢ (𝐴 ≺ (𝐴 × 𝐴) → 𝐴 ∈ FinVII) |
| 40 | 10, 39 | jaoi 394 |
. 2
⊢ ((𝐴 ≺ 2𝑜
∨ 𝐴 ≺ (𝐴 × 𝐴)) → 𝐴 ∈ FinVII) |
| 41 | 1, 40 | sylbi 207 |
1
⊢ (𝐴 ∈ FinVI →
𝐴 ∈
FinVII) |