MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrhashecclwwlk Structured version   Visualization version   GIF version

Theorem umgrhashecclwwlk 26955
Description: The size of every equivalence class of the equivalence relation over the set of closed walks (defined as words) with a fixed length which is a prime number equals this length (in an undirected simple graph). (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 1-May-2021.)
Hypotheses
Ref Expression
erclwwlksn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlksn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
umgrhashecclwwlk ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 ∈ (𝑊 / ) → (#‘𝑈) = 𝑁))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡   𝑛,𝑊   𝑛,𝐺,𝑢   𝑈,𝑛,𝑢
Allowed substitution hints:   (𝑢,𝑡,𝑛)   𝑈(𝑡)   𝐺(𝑡)

Proof of Theorem umgrhashecclwwlk
Dummy variables 𝑥 𝑦 𝑚 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erclwwlksn.w . . . . 5 𝑊 = (𝑁 ClWWalksN 𝐺)
2 erclwwlksn.r . . . . 5 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
31, 2eclclwwlksn1 26952 . . . 4 (𝑈 ∈ (𝑊 / ) → (𝑈 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
4 rabeq 3192 . . . . . . . . . 10 (𝑊 = (𝑁 ClWWalksN 𝐺) → {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
51, 4mp1i 13 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
6 prmnn 15388 . . . . . . . . . . . 12 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
76nnnn0d 11351 . . . . . . . . . . 11 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ0)
87adantl 482 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ0)
91eleq2i 2693 . . . . . . . . . . 11 (𝑥𝑊𝑥 ∈ (𝑁 ClWWalksN 𝐺))
109biimpi 206 . . . . . . . . . 10 (𝑥𝑊𝑥 ∈ (𝑁 ClWWalksN 𝐺))
11 clwwlksnscsh 26940 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
128, 10, 11syl2an 494 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
135, 12eqtrd 2656 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
1413eqeq2d 2632 . . . . . . 7 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → (𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
156adantl 482 . . . . . . . . . . . 12 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ)
16 simpll 790 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑥 ∈ Word (Vtx‘𝐺))
17 elnnne0 11306 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
18 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 = (#‘𝑥) → (𝑁 = 0 ↔ (#‘𝑥) = 0))
1918eqcoms 2630 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑥) = 𝑁 → (𝑁 = 0 ↔ (#‘𝑥) = 0))
20 hasheq0 13154 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ Word (Vtx‘𝐺) → ((#‘𝑥) = 0 ↔ 𝑥 = ∅))
2119, 20sylan9bbr 737 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → (𝑁 = 0 ↔ 𝑥 = ∅))
2221necon3bid 2838 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → (𝑁 ≠ 0 ↔ 𝑥 ≠ ∅))
2322biimpcd 239 . . . . . . . . . . . . . . . . . 18 (𝑁 ≠ 0 → ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → 𝑥 ≠ ∅))
2417, 23simplbiim 659 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → 𝑥 ≠ ∅))
2524impcom 446 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑥 ≠ ∅)
26 simplr 792 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → (#‘𝑥) = 𝑁)
2726eqcomd 2628 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑁 = (#‘𝑥))
2816, 25, 273jca 1242 . . . . . . . . . . . . . . 15 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (#‘𝑥)))
2928ex 450 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → (𝑁 ∈ ℕ → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (#‘𝑥))))
30 eqid 2622 . . . . . . . . . . . . . . 15 (Vtx‘𝐺) = (Vtx‘𝐺)
3130clwwlknbp 26885 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁))
3229, 31syl11 33 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (#‘𝑥))))
339, 32syl5bi 232 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑥𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (#‘𝑥))))
3415, 33syl 17 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑥𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (#‘𝑥))))
3534imp 445 . . . . . . . . . 10 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (#‘𝑥)))
36 scshwfzeqfzo 13572 . . . . . . . . . 10 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (#‘𝑥)) → {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
3735, 36syl 17 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
3837eqeq2d 2632 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
39 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = (#‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}))
40 simprl 794 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((#‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (#‘𝑥) ∈ ℙ)) → 𝐺 ∈ UMGraph )
41 prmuz2 15408 . . . . . . . . . . . . . . . . . . 19 ((#‘𝑥) ∈ ℙ → (#‘𝑥) ∈ (ℤ‘2))
4241adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ UMGraph ∧ (#‘𝑥) ∈ ℙ) → (#‘𝑥) ∈ (ℤ‘2))
4342adantl 482 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((#‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (#‘𝑥) ∈ ℙ)) → (#‘𝑥) ∈ (ℤ‘2))
44 simplr 792 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((#‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (#‘𝑥) ∈ ℙ)) → 𝑥 ∈ ((#‘𝑥) ClWWalksN 𝐺))
45 umgr2cwwkdifex 26942 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ UMGraph ∧ (#‘𝑥) ∈ (ℤ‘2) ∧ 𝑥 ∈ ((#‘𝑥) ClWWalksN 𝐺)) → ∃𝑖 ∈ (0..^(#‘𝑥))(𝑥𝑖) ≠ (𝑥‘0))
4640, 43, 44, 45syl3anc 1326 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((#‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (#‘𝑥) ∈ ℙ)) → ∃𝑖 ∈ (0..^(#‘𝑥))(𝑥𝑖) ≠ (𝑥‘0))
47 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
4847eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑦 = (𝑥 cyclShift 𝑚)))
4948cbvrexv 3172 . . . . . . . . . . . . . . . . . . . 20 (∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))
50 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑢 → (𝑦 = (𝑥 cyclShift 𝑚) ↔ 𝑢 = (𝑥 cyclShift 𝑚)))
51 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = (𝑥 cyclShift 𝑚) ↔ (𝑥 cyclShift 𝑚) = 𝑢)
5250, 51syl6bb 276 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑢 → (𝑦 = (𝑥 cyclShift 𝑚) ↔ (𝑥 cyclShift 𝑚) = 𝑢))
5352rexbidv 3052 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑢 → (∃𝑚 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚) ↔ ∃𝑚 ∈ (0..^(#‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢))
5449, 53syl5bb 272 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑢 → (∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0..^(#‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢))
5554cbvrabv 3199 . . . . . . . . . . . . . . . . . 18 {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} = {𝑢 ∈ Word (Vtx‘𝐺) ∣ ∃𝑚 ∈ (0..^(#‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢}
5655cshwshashnsame 15810 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) ∈ ℙ) → (∃𝑖 ∈ (0..^(#‘𝑥))(𝑥𝑖) ≠ (𝑥‘0) → (#‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (#‘𝑥)))
5756ad2ant2rl 785 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((#‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (#‘𝑥) ∈ ℙ)) → (∃𝑖 ∈ (0..^(#‘𝑥))(𝑥𝑖) ≠ (𝑥‘0) → (#‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (#‘𝑥)))
5846, 57mpd 15 . . . . . . . . . . . . . . 15 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((#‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (#‘𝑥) ∈ ℙ)) → (#‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (#‘𝑥))
5939, 58sylan9eqr 2678 . . . . . . . . . . . . . 14 ((((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ∈ ((#‘𝑥) ClWWalksN 𝐺)) ∧ (𝐺 ∈ UMGraph ∧ (#‘𝑥) ∈ ℙ)) ∧ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) → (#‘𝑈) = (#‘𝑥))
6059exp41 638 . . . . . . . . . . . . 13 (𝑥 ∈ Word (Vtx‘𝐺) → (𝑥 ∈ ((#‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (#‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = (#‘𝑥)))))
6160adantr 481 . . . . . . . . . . . 12 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → (𝑥 ∈ ((#‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (#‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = (#‘𝑥)))))
62 oveq1 6657 . . . . . . . . . . . . . . . 16 (𝑁 = (#‘𝑥) → (𝑁 ClWWalksN 𝐺) = ((#‘𝑥) ClWWalksN 𝐺))
6362eleq2d 2687 . . . . . . . . . . . . . . 15 (𝑁 = (#‘𝑥) → (𝑥 ∈ (𝑁 ClWWalksN 𝐺) ↔ 𝑥 ∈ ((#‘𝑥) ClWWalksN 𝐺)))
64 eleq1 2689 . . . . . . . . . . . . . . . . 17 (𝑁 = (#‘𝑥) → (𝑁 ∈ ℙ ↔ (#‘𝑥) ∈ ℙ))
6564anbi2d 740 . . . . . . . . . . . . . . . 16 (𝑁 = (#‘𝑥) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ↔ (𝐺 ∈ UMGraph ∧ (#‘𝑥) ∈ ℙ)))
66 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = (#‘𝑥) → (0..^𝑁) = (0..^(#‘𝑥)))
6766rexeqdv 3145 . . . . . . . . . . . . . . . . . . 19 (𝑁 = (#‘𝑥) → (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
6867rabbidv 3189 . . . . . . . . . . . . . . . . . 18 (𝑁 = (#‘𝑥) → {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)})
6968eqeq2d 2632 . . . . . . . . . . . . . . . . 17 (𝑁 = (#‘𝑥) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}))
70 eqeq2 2633 . . . . . . . . . . . . . . . . 17 (𝑁 = (#‘𝑥) → ((#‘𝑈) = 𝑁 ↔ (#‘𝑈) = (#‘𝑥)))
7169, 70imbi12d 334 . . . . . . . . . . . . . . . 16 (𝑁 = (#‘𝑥) → ((𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = 𝑁) ↔ (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = (#‘𝑥))))
7265, 71imbi12d 334 . . . . . . . . . . . . . . 15 (𝑁 = (#‘𝑥) → (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = 𝑁)) ↔ ((𝐺 ∈ UMGraph ∧ (#‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = (#‘𝑥)))))
7363, 72imbi12d 334 . . . . . . . . . . . . . 14 (𝑁 = (#‘𝑥) → ((𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = 𝑁))) ↔ (𝑥 ∈ ((#‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (#‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = (#‘𝑥))))))
7473eqcoms 2630 . . . . . . . . . . . . 13 ((#‘𝑥) = 𝑁 → ((𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = 𝑁))) ↔ (𝑥 ∈ ((#‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (#‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = (#‘𝑥))))))
7574adantl 482 . . . . . . . . . . . 12 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → ((𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = 𝑁))) ↔ (𝑥 ∈ ((#‘𝑥) ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ (#‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = (#‘𝑥))))))
7661, 75mpbird 247 . . . . . . . . . . 11 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = 𝑁))))
7731, 76mpcom 38 . . . . . . . . . 10 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = 𝑁)))
7877, 1eleq2s 2719 . . . . . . . . 9 (𝑥𝑊 → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = 𝑁)))
7978impcom 446 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = 𝑁))
8038, 79sylbid 230 . . . . . . 7 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = 𝑁))
8114, 80sylbid 230 . . . . . 6 (((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑥𝑊) → (𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = 𝑁))
8281rexlimdva 3031 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (∃𝑥𝑊 𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = 𝑁))
8382com12 32 . . . 4 (∃𝑥𝑊 𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (#‘𝑈) = 𝑁))
843, 83syl6bi 243 . . 3 (𝑈 ∈ (𝑊 / ) → (𝑈 ∈ (𝑊 / ) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (#‘𝑈) = 𝑁)))
8584pm2.43i 52 . 2 (𝑈 ∈ (𝑊 / ) → ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (#‘𝑈) = 𝑁))
8685com12 32 1 ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ) → (𝑈 ∈ (𝑊 / ) → (#‘𝑈) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {crab 2916  c0 3915  {copab 4712  cfv 5888  (class class class)co 6650   / cqs 7741  0cc0 9936  cn 11020  2c2 11070  0cn0 11292  cuz 11687  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   cyclShift ccsh 13534  cprime 15385  Vtxcvtx 25874   UMGraph cumgr 25976   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-substr 13303  df-reps 13306  df-csh 13535  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-edg 25940  df-umgr 25978  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  fusgrhashclwwlkn  26956
  Copyright terms: Public domain W3C validator