Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneallem2 Structured version   Visualization version   GIF version

Theorem lighneallem2 41523
Description: Lemma 2 for lighneal 41528. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
lighneallem2 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)

Proof of Theorem lighneallem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 evennn2n 15075 . . . 4 (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℕ (2 · 𝑘) = 𝑁))
213ad2ant3 1084 . . 3 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℕ (2 · 𝑘) = 𝑁))
3 oveq2 6658 . . . . . . . . . 10 (𝑁 = (2 · 𝑘) → (2↑𝑁) = (2↑(2 · 𝑘)))
43eqcoms 2630 . . . . . . . . 9 ((2 · 𝑘) = 𝑁 → (2↑𝑁) = (2↑(2 · 𝑘)))
5 2cnd 11093 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 2 ∈ ℂ)
6 nncn 11028 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
75, 6mulcomd 10061 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 𝑘) = (𝑘 · 2))
87oveq2d 6666 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2↑(2 · 𝑘)) = (2↑(𝑘 · 2)))
9 2nn0 11309 . . . . . . . . . . . . 13 2 ∈ ℕ0
109a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℕ0)
11 nnnn0 11299 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
125, 10, 11expmuld 13011 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2↑(𝑘 · 2)) = ((2↑𝑘)↑2))
138, 12eqtrd 2656 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2↑(2 · 𝑘)) = ((2↑𝑘)↑2))
1413adantl 482 . . . . . . . . 9 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (2↑(2 · 𝑘)) = ((2↑𝑘)↑2))
154, 14sylan9eqr 2678 . . . . . . . 8 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → (2↑𝑁) = ((2↑𝑘)↑2))
1615oveq1d 6665 . . . . . . 7 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → ((2↑𝑁) − 1) = (((2↑𝑘)↑2) − 1))
1716eqeq1d 2624 . . . . . 6 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → (((2↑𝑁) − 1) = (𝑃𝑀) ↔ (((2↑𝑘)↑2) − 1) = (𝑃𝑀)))
18 elnn1uz2 11765 . . . . . . . . 9 (𝑘 ∈ ℕ ↔ (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)))
19 oveq2 6658 . . . . . . . . . . . . . . . . . 18 (𝑘 = 1 → (2↑𝑘) = (2↑1))
20 2cn 11091 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
21 exp1 12866 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℂ → (2↑1) = 2)
2220, 21ax-mp 5 . . . . . . . . . . . . . . . . . 18 (2↑1) = 2
2319, 22syl6eq 2672 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (2↑𝑘) = 2)
2423oveq1d 6665 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → ((2↑𝑘)↑2) = (2↑2))
2524oveq1d 6665 . . . . . . . . . . . . . . 15 (𝑘 = 1 → (((2↑𝑘)↑2) − 1) = ((2↑2) − 1))
26 sq2 12960 . . . . . . . . . . . . . . . . 17 (2↑2) = 4
2726oveq1i 6660 . . . . . . . . . . . . . . . 16 ((2↑2) − 1) = (4 − 1)
28 4m1e3 11138 . . . . . . . . . . . . . . . 16 (4 − 1) = 3
2927, 28eqtri 2644 . . . . . . . . . . . . . . 15 ((2↑2) − 1) = 3
3025, 29syl6eq 2672 . . . . . . . . . . . . . 14 (𝑘 = 1 → (((2↑𝑘)↑2) − 1) = 3)
3130eqeq1d 2624 . . . . . . . . . . . . 13 (𝑘 = 1 → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) ↔ 3 = (𝑃𝑀)))
3231adantr 481 . . . . . . . . . . . 12 ((𝑘 = 1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) ↔ 3 = (𝑃𝑀)))
33 eqcom 2629 . . . . . . . . . . . . . . 15 (3 = (𝑃𝑀) ↔ (𝑃𝑀) = 3)
34 eldifi 3732 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
35 prmnn 15388 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
36 nnre 11027 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
3734, 35, 363syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ)
38373ad2ant1 1082 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ ℝ)
39 nnnn0 11299 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
40393ad2ant2 1083 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℕ0)
4138, 40reexpcld 13025 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃𝑀) ∈ ℝ)
4241adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = 3) → (𝑃𝑀) ∈ ℝ)
43 simpr 477 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = 3) → (𝑃𝑀) = 3)
4442, 43eqled 10140 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = 3) → (𝑃𝑀) ≤ 3)
4544ex 450 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑃𝑀) = 3 → (𝑃𝑀) ≤ 3))
4633, 45syl5bi 232 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (3 = (𝑃𝑀) → (𝑃𝑀) ≤ 3))
4735nnred 11035 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
48 prmgt1 15409 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 1 < 𝑃)
4947, 48jca 554 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
5034, 49syl 17 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
51503ad2ant1 1082 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
52 nnz 11399 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
53523ad2ant2 1083 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
54 3rp 11838 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ+
5554a1i 11 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 3 ∈ ℝ+)
56 efexple 25006 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℝ ∧ 1 < 𝑃) ∧ 𝑀 ∈ ℤ ∧ 3 ∈ ℝ+) → ((𝑃𝑀) ≤ 3 ↔ 𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃)))))
5751, 53, 55, 56syl3anc 1326 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑃𝑀) ≤ 3 ↔ 𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃)))))
58 oddprmge3 15412 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
59 eluzle 11700 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘3) → 3 ≤ 𝑃)
6058, 59syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 3 ≤ 𝑃)
6154a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → 3 ∈ ℝ+)
62 nnrp 11842 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
6334, 35, 623syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ+)
6461, 63logled 24373 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → (3 ≤ 𝑃 ↔ (log‘3) ≤ (log‘𝑃)))
6560, 64mpbid 222 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → (log‘3) ≤ (log‘𝑃))
66653ad2ant1 1082 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (log‘3) ≤ (log‘𝑃))
67 relogcl 24322 . . . . . . . . . . . . . . . . . . 19 (3 ∈ ℝ+ → (log‘3) ∈ ℝ)
6854, 67ax-mp 5 . . . . . . . . . . . . . . . . . 18 (log‘3) ∈ ℝ
69 rplogcl 24350 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (log‘𝑃) ∈ ℝ+)
7034, 49, 693syl 18 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → (log‘𝑃) ∈ ℝ+)
71703ad2ant1 1082 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (log‘𝑃) ∈ ℝ+)
72 divle1le 11900 . . . . . . . . . . . . . . . . . 18 (((log‘3) ∈ ℝ ∧ (log‘𝑃) ∈ ℝ+) → (((log‘3) / (log‘𝑃)) ≤ 1 ↔ (log‘3) ≤ (log‘𝑃)))
7368, 71, 72sylancr 695 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((log‘3) / (log‘𝑃)) ≤ 1 ↔ (log‘3) ≤ (log‘𝑃)))
7466, 73mpbird 247 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((log‘3) / (log‘𝑃)) ≤ 1)
75 fldivle 12632 . . . . . . . . . . . . . . . . . 18 (((log‘3) ∈ ℝ ∧ (log‘𝑃) ∈ ℝ+) → (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃)))
7668, 71, 75sylancr 695 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃)))
77 nnre 11027 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
78773ad2ant2 1083 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ)
7968a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ (ℙ ∖ {2}) → (log‘3) ∈ ℝ)
8062relogcld 24369 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℕ → (log‘𝑃) ∈ ℝ)
8134, 35, 803syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ (ℙ ∖ {2}) → (log‘𝑃) ∈ ℝ)
8235nnrpd 11870 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
83 1red 10055 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℙ → 1 ∈ ℝ)
8483, 48gtned 10172 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℙ → 𝑃 ≠ 1)
8582, 84jca 554 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ+𝑃 ≠ 1))
86 logne0 24326 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ ℝ+𝑃 ≠ 1) → (log‘𝑃) ≠ 0)
8734, 85, 863syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ (ℙ ∖ {2}) → (log‘𝑃) ≠ 0)
8879, 81, 87redivcld 10853 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → ((log‘3) / (log‘𝑃)) ∈ ℝ)
8988flcld 12599 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ (ℙ ∖ {2}) → (⌊‘((log‘3) / (log‘𝑃))) ∈ ℤ)
9089zred 11482 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → (⌊‘((log‘3) / (log‘𝑃))) ∈ ℝ)
91903ad2ant1 1082 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((log‘3) / (log‘𝑃))) ∈ ℝ)
92883ad2ant1 1082 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((log‘3) / (log‘𝑃)) ∈ ℝ)
93 letr 10131 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℝ ∧ (⌊‘((log‘3) / (log‘𝑃))) ∈ ℝ ∧ ((log‘3) / (log‘𝑃)) ∈ ℝ) → ((𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) ∧ (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃))) → 𝑀 ≤ ((log‘3) / (log‘𝑃))))
9478, 91, 92, 93syl3anc 1326 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) ∧ (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃))) → 𝑀 ≤ ((log‘3) / (log‘𝑃))))
95 1red 10055 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ)
96 letr 10131 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℝ ∧ ((log‘3) / (log‘𝑃)) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑀 ≤ ((log‘3) / (log‘𝑃)) ∧ ((log‘3) / (log‘𝑃)) ≤ 1) → 𝑀 ≤ 1))
9778, 92, 95, 96syl3anc 1326 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ ((log‘3) / (log‘𝑃)) ∧ ((log‘3) / (log‘𝑃)) ≤ 1) → 𝑀 ≤ 1))
98 nnge1 11046 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
99 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 = 1 ↔ 1 = 𝑀)
100 1red 10055 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ ℕ → 1 ∈ ℝ)
101100, 77letri3d 10179 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℕ → (1 = 𝑀 ↔ (1 ≤ 𝑀𝑀 ≤ 1)))
10299, 101syl5rbb 273 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ → ((1 ≤ 𝑀𝑀 ≤ 1) ↔ 𝑀 = 1))
103102biimpd 219 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ → ((1 ≤ 𝑀𝑀 ≤ 1) → 𝑀 = 1))
10498, 103mpand 711 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → (𝑀 ≤ 1 → 𝑀 = 1))
1051043ad2ant2 1083 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ 1 → 𝑀 = 1))
10697, 105syld 47 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ ((log‘3) / (log‘𝑃)) ∧ ((log‘3) / (log‘𝑃)) ≤ 1) → 𝑀 = 1))
107106expd 452 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ ((log‘3) / (log‘𝑃)) → (((log‘3) / (log‘𝑃)) ≤ 1 → 𝑀 = 1)))
10894, 107syld 47 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) ∧ (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃))) → (((log‘3) / (log‘𝑃)) ≤ 1 → 𝑀 = 1)))
10976, 108mpan2d 710 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) → (((log‘3) / (log‘𝑃)) ≤ 1 → 𝑀 = 1)))
11074, 109mpid 44 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) → 𝑀 = 1))
11157, 110sylbid 230 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑃𝑀) ≤ 3 → 𝑀 = 1))
11246, 111syld 47 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (3 = (𝑃𝑀) → 𝑀 = 1))
113112adantl 482 . . . . . . . . . . . 12 ((𝑘 = 1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (3 = (𝑃𝑀) → 𝑀 = 1))
11432, 113sylbid 230 . . . . . . . . . . 11 ((𝑘 = 1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
115114ex 450 . . . . . . . . . 10 (𝑘 = 1 → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
116 sq1 12958 . . . . . . . . . . . . . . 15 (1↑2) = 1
117116eqcomi 2631 . . . . . . . . . . . . . 14 1 = (1↑2)
118117oveq2i 6661 . . . . . . . . . . . . 13 (((2↑𝑘)↑2) − 1) = (((2↑𝑘)↑2) − (1↑2))
119118eqeq1i 2627 . . . . . . . . . . . 12 ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) ↔ (((2↑𝑘)↑2) − (1↑2)) = (𝑃𝑀))
120 eqcom 2629 . . . . . . . . . . . . 13 ((((2↑𝑘)↑2) − (1↑2)) = (𝑃𝑀) ↔ (𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)))
1219a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘2) → 2 ∈ ℕ0)
122 eluzge2nn0 11727 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ0)
123121, 122nn0expcld 13031 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘2) → (2↑𝑘) ∈ ℕ0)
124123adantr 481 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (2↑𝑘) ∈ ℕ0)
125 1nn0 11308 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
126125a1i 11 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 1 ∈ ℕ0)
127 1p1e2 11134 . . . . . . . . . . . . . . . . . 18 (1 + 1) = 2
12822eqcomi 2631 . . . . . . . . . . . . . . . . . 18 2 = (2↑1)
129127, 128eqtri 2644 . . . . . . . . . . . . . . . . 17 (1 + 1) = (2↑1)
130 eluz2gt1 11760 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) → 1 < 𝑘)
131 2re 11090 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
132131a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ‘2) → 2 ∈ ℝ)
133 1zzd 11408 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ‘2) → 1 ∈ ℤ)
134 eluzelz 11697 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℤ)
135 1lt2 11194 . . . . . . . . . . . . . . . . . . . 20 1 < 2
136135a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ‘2) → 1 < 2)
137132, 133, 134, 136ltexp2d 13038 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) → (1 < 𝑘 ↔ (2↑1) < (2↑𝑘)))
138130, 137mpbid 222 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘2) → (2↑1) < (2↑𝑘))
139129, 138syl5eqbr 4688 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘2) → (1 + 1) < (2↑𝑘))
140139adantr 481 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (1 + 1) < (2↑𝑘))
14134, 39anim12i 590 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ) → (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0))
1421413adant3 1081 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0))
143142adantl 482 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0))
144 difsqpwdvds 15591 . . . . . . . . . . . . . . 15 ((((2↑𝑘) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ (1 + 1) < (2↑𝑘)) ∧ (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0)) → ((𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)) → 𝑃 ∥ (2 · 1)))
145124, 126, 140, 143, 144syl31anc 1329 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)) → 𝑃 ∥ (2 · 1)))
146 2t1e2 11176 . . . . . . . . . . . . . . . . . . 19 (2 · 1) = 2
147146breq2i 4661 . . . . . . . . . . . . . . . . . 18 (𝑃 ∥ (2 · 1) ↔ 𝑃 ∥ 2)
148 prmuz2 15408 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
14934, 148syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
150 2prm 15405 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℙ
151 dvdsprm 15415 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ (ℤ‘2) ∧ 2 ∈ ℙ) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
152149, 150, 151sylancl 694 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
153147, 152syl5bb 272 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ (2 · 1) ↔ 𝑃 = 2))
154 eldifsn 4317 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
155 eqneqall 2805 . . . . . . . . . . . . . . . . . . 19 (𝑃 = 2 → (𝑃 ≠ 2 → 𝑀 = 1))
156155com12 32 . . . . . . . . . . . . . . . . . 18 (𝑃 ≠ 2 → (𝑃 = 2 → 𝑀 = 1))
157154, 156simplbiim 659 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 = 2 → 𝑀 = 1))
158153, 157sylbid 230 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ (2 · 1) → 𝑀 = 1))
1591583ad2ant1 1082 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (2 · 1) → 𝑀 = 1))
160159adantl 482 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑃 ∥ (2 · 1) → 𝑀 = 1))
161145, 160syld 47 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)) → 𝑀 = 1))
162120, 161syl5bi 232 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − (1↑2)) = (𝑃𝑀) → 𝑀 = 1))
163119, 162syl5bi 232 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
164163ex 450 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘2) → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
165115, 164jaoi 394 . . . . . . . . 9 ((𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)) → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
16618, 165sylbi 207 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
167166impcom 446 . . . . . . 7 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
168167adantr 481 . . . . . 6 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
16917, 168sylbid 230 . . . . 5 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))
170169ex 450 . . . 4 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) = 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
171170rexlimdva 3031 . . 3 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (∃𝑘 ∈ ℕ (2 · 𝑘) = 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
1722, 171sylbid 230 . 2 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 ∥ 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
1731723imp 1256 1 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  cdif 3571  {csn 4177   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  4c4 11072  0cn0 11292  cz 11377  cuz 11687  +crp 11832  cfl 12591  cexp 12860  cdvds 14983  cprime 15385  logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  lighneal  41528
  Copyright terms: Public domain W3C validator