MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppimacnv Structured version   Visualization version   GIF version

Theorem suppimacnv 7306
Description: Support sets of functions expressed by inverse images. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 7-Apr-2019.)
Assertion
Ref Expression
suppimacnv ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = (𝑅 “ (V ∖ {𝑍})))

Proof of Theorem suppimacnv
Dummy variables 𝑥 𝑦 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4657 . . . . . . . 8 (𝑡 = 𝑠 → (𝑥𝑅𝑡𝑥𝑅𝑠))
21cbvexvw 1970 . . . . . . 7 (∃𝑡 𝑥𝑅𝑡 ↔ ∃𝑠 𝑥𝑅𝑠)
3 breq2 4657 . . . . . . . . . . . . . 14 (𝑠 = 𝑍 → (𝑥𝑅𝑠𝑥𝑅𝑍))
43anbi1d 741 . . . . . . . . . . . . 13 (𝑠 = 𝑍 → ((𝑥𝑅𝑠 ∧ (𝑥𝑅𝑡𝑡𝑍)) ↔ (𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍))))
5 bianir 1009 . . . . . . . . . . . . . . . . . 18 ((𝑡𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → 𝑥𝑅𝑡)
6 vex 3203 . . . . . . . . . . . . . . . . . . . 20 𝑡 ∈ V
7 breq2 4657 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑡 → (𝑥𝑅𝑦𝑥𝑅𝑡))
8 neeq1 2856 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑡 → (𝑦𝑍𝑡𝑍))
97, 8anbi12d 747 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑡 → ((𝑥𝑅𝑦𝑦𝑍) ↔ (𝑥𝑅𝑡𝑡𝑍)))
106, 9spcev 3300 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑅𝑡𝑡𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
1110ex 450 . . . . . . . . . . . . . . . . . 18 (𝑥𝑅𝑡 → (𝑡𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
125, 11syl 17 . . . . . . . . . . . . . . . . 17 ((𝑡𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → (𝑡𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
1312ex 450 . . . . . . . . . . . . . . . 16 (𝑡𝑍 → ((𝑥𝑅𝑡𝑡𝑍) → (𝑡𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
1413pm2.43a 54 . . . . . . . . . . . . . . 15 (𝑡𝑍 → ((𝑥𝑅𝑡𝑡𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
1514adantld 483 . . . . . . . . . . . . . 14 (𝑡𝑍 → ((𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
16 nne 2798 . . . . . . . . . . . . . . . 16 𝑡𝑍𝑡 = 𝑍)
17 notbi 309 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝑅𝑡𝑡𝑍) ↔ (¬ 𝑥𝑅𝑡 ↔ ¬ 𝑡𝑍))
18 bianir 1009 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ 𝑡𝑍 ∧ (¬ 𝑥𝑅𝑡 ↔ ¬ 𝑡𝑍)) → ¬ 𝑥𝑅𝑡)
19 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑍 = 𝑡 → (𝑥𝑅𝑍𝑥𝑅𝑡))
2019eqcoms 2630 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑍 → (𝑥𝑅𝑍𝑥𝑅𝑡))
21 pm2.24 121 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝑅𝑡 → (¬ 𝑥𝑅𝑡 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
2220, 21syl6bi 243 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑍 → (𝑥𝑅𝑍 → (¬ 𝑥𝑅𝑡 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
2322com13 88 . . . . . . . . . . . . . . . . . . . . . 22 𝑥𝑅𝑡 → (𝑥𝑅𝑍 → (𝑡 = 𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
2418, 23syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝑡𝑍 ∧ (¬ 𝑥𝑅𝑡 ↔ ¬ 𝑡𝑍)) → (𝑥𝑅𝑍 → (𝑡 = 𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
2524ex 450 . . . . . . . . . . . . . . . . . . . 20 𝑡𝑍 → ((¬ 𝑥𝑅𝑡 ↔ ¬ 𝑡𝑍) → (𝑥𝑅𝑍 → (𝑡 = 𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))))
2617, 25syl5bi 232 . . . . . . . . . . . . . . . . . . 19 𝑡𝑍 → ((𝑥𝑅𝑡𝑡𝑍) → (𝑥𝑅𝑍 → (𝑡 = 𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))))
2726com13 88 . . . . . . . . . . . . . . . . . 18 (𝑥𝑅𝑍 → ((𝑥𝑅𝑡𝑡𝑍) → (¬ 𝑡𝑍 → (𝑡 = 𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))))
2827imp 445 . . . . . . . . . . . . . . . . 17 ((𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → (¬ 𝑡𝑍 → (𝑡 = 𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
2928com13 88 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑍 → (¬ 𝑡𝑍 → ((𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
3016, 29sylbi 207 . . . . . . . . . . . . . . 15 𝑡𝑍 → (¬ 𝑡𝑍 → ((𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
3130pm2.43i 52 . . . . . . . . . . . . . 14 𝑡𝑍 → ((𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
3215, 31pm2.61i 176 . . . . . . . . . . . . 13 ((𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
334, 32syl6bi 243 . . . . . . . . . . . 12 (𝑠 = 𝑍 → ((𝑥𝑅𝑠 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
34 vex 3203 . . . . . . . . . . . . . . . 16 𝑠 ∈ V
35 breq2 4657 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑠 → (𝑥𝑅𝑦𝑥𝑅𝑠))
36 neeq1 2856 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑠 → (𝑦𝑍𝑠𝑍))
3735, 36anbi12d 747 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑠 → ((𝑥𝑅𝑦𝑦𝑍) ↔ (𝑥𝑅𝑠𝑠𝑍)))
3834, 37spcev 3300 . . . . . . . . . . . . . . 15 ((𝑥𝑅𝑠𝑠𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
3938ex 450 . . . . . . . . . . . . . 14 (𝑥𝑅𝑠 → (𝑠𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4039adantr 481 . . . . . . . . . . . . 13 ((𝑥𝑅𝑠 ∧ (𝑥𝑅𝑡𝑡𝑍)) → (𝑠𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4140com12 32 . . . . . . . . . . . 12 (𝑠𝑍 → ((𝑥𝑅𝑠 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4233, 41pm2.61ine 2877 . . . . . . . . . . 11 ((𝑥𝑅𝑠 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
4342expcom 451 . . . . . . . . . 10 ((𝑥𝑅𝑡𝑡𝑍) → (𝑥𝑅𝑠 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4443exlimiv 1858 . . . . . . . . 9 (∃𝑡(𝑥𝑅𝑡𝑡𝑍) → (𝑥𝑅𝑠 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4544com12 32 . . . . . . . 8 (𝑥𝑅𝑠 → (∃𝑡(𝑥𝑅𝑡𝑡𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4645exlimiv 1858 . . . . . . 7 (∃𝑠 𝑥𝑅𝑠 → (∃𝑡(𝑥𝑅𝑡𝑡𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
472, 46sylbi 207 . . . . . 6 (∃𝑡 𝑥𝑅𝑡 → (∃𝑡(𝑥𝑅𝑡𝑡𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4847imp 445 . . . . 5 ((∃𝑡 𝑥𝑅𝑡 ∧ ∃𝑡(𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
4948a1i 11 . . . 4 ((𝑅𝑉𝑍𝑊) → ((∃𝑡 𝑥𝑅𝑡 ∧ ∃𝑡(𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
5049ss2abdv 3675 . . 3 ((𝑅𝑉𝑍𝑊) → {𝑥 ∣ (∃𝑡 𝑥𝑅𝑡 ∧ ∃𝑡(𝑥𝑅𝑡𝑡𝑍))} ⊆ {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)})
51 suppvalbr 7299 . . 3 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑡 𝑥𝑅𝑡 ∧ ∃𝑡(𝑥𝑅𝑡𝑡𝑍))})
52 cnvimadfsn 7304 . . . 4 (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)}
5352a1i 11 . . 3 ((𝑅𝑉𝑍𝑊) → (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)})
5450, 51, 533sstr4d 3648 . 2 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) ⊆ (𝑅 “ (V ∖ {𝑍})))
55 suppimacnvss 7305 . 2 ((𝑅𝑉𝑍𝑊) → (𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍))
5654, 55eqssd 3620 1 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = (𝑅 “ (V ∖ {𝑍})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wne 2794  Vcvv 3200  cdif 3571  {csn 4177   class class class wbr 4653  ccnv 5113  cima 5117  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  frnsuppeq  7307  suppun  7315  mptsuppdifd  7317  supp0cosupp0  7334  imacosupp  7335  fdmfisuppfi  8284  fsuppun  8294  fsuppco  8307  gsumval3a  18304  gsumzf1o  18313  gsumzaddlem  18321  gsumzmhm  18337  gsumzoppg  18344  deg1val  23856  suppss3  29502  ffsrn  29504  fpwrelmapffslem  29507  sitgclg  30404  eulerpartlemmf  30437  eulerpartlemgf  30441  fidmfisupp  39390
  Copyright terms: Public domain W3C validator