Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem11 Structured version   Visualization version   GIF version

Theorem cvmlift2lem11 31295
Description: Lemma for cvmlift2 31298. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
cvmlift2.m 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
cvmlift2lem11.1 (𝜑𝑈 ∈ II)
cvmlift2lem11.2 (𝜑𝑉 ∈ II)
cvmlift2lem11.3 (𝜑𝑌𝑉)
cvmlift2lem11.4 (𝜑𝑍𝑉)
cvmlift2lem11.5 (𝜑 → (∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶)))
Assertion
Ref Expression
cvmlift2lem11 (𝜑 → ((𝑈 × {𝑌}) ⊆ 𝑀 → (𝑈 × {𝑍}) ⊆ 𝑀))
Distinct variable groups:   𝑤,𝑓,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑤,𝑥,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑓,𝐽,𝑤,𝑥,𝑦,𝑧   𝑤,𝑈,𝑧   𝑓,𝐺,𝑤,𝑥,𝑦,𝑧   𝑤,𝑉   𝑓,𝐻,𝑤,𝑥,𝑦,𝑧   𝑧,𝑍   𝐶,𝑓,𝑤,𝑥,𝑦,𝑧   𝑃,𝑓,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑓,𝑌,𝑤,𝑥,𝑦,𝑧   𝑓,𝐾,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑓)   𝑃(𝑤)   𝑈(𝑥,𝑦,𝑓)   𝑀(𝑤,𝑓)   𝑉(𝑥,𝑦,𝑧,𝑓)   𝑍(𝑥,𝑦,𝑤,𝑓)

Proof of Theorem cvmlift2lem11
StepHypRef Expression
1 cvmlift2lem11.1 . . . . . . 7 (𝜑𝑈 ∈ II)
21adantr 481 . . . . . 6 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑈 ∈ II)
3 elssuni 4467 . . . . . . 7 (𝑈 ∈ II → 𝑈 II)
4 iiuni 22684 . . . . . . 7 (0[,]1) = II
53, 4syl6sseqr 3652 . . . . . 6 (𝑈 ∈ II → 𝑈 ⊆ (0[,]1))
62, 5syl 17 . . . . 5 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑈 ⊆ (0[,]1))
7 cvmlift2lem11.4 . . . . . . . 8 (𝜑𝑍𝑉)
8 cvmlift2lem11.2 . . . . . . . 8 (𝜑𝑉 ∈ II)
9 elunii 4441 . . . . . . . . 9 ((𝑍𝑉𝑉 ∈ II) → 𝑍 II)
109, 4syl6eleqr 2712 . . . . . . . 8 ((𝑍𝑉𝑉 ∈ II) → 𝑍 ∈ (0[,]1))
117, 8, 10syl2anc 693 . . . . . . 7 (𝜑𝑍 ∈ (0[,]1))
1211adantr 481 . . . . . 6 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑍 ∈ (0[,]1))
1312snssd 4340 . . . . 5 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → {𝑍} ⊆ (0[,]1))
14 xpss12 5225 . . . . 5 ((𝑈 ⊆ (0[,]1) ∧ {𝑍} ⊆ (0[,]1)) → (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1)))
156, 13, 14syl2anc 693 . . . 4 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1)))
16 cvmlift2lem11.3 . . . . . . . . . 10 (𝜑𝑌𝑉)
1716adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑌𝑉)
18 cvmlift2.b . . . . . . . . . . . . 13 𝐵 = 𝐶
19 cvmlift2.f . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
20 cvmlift2.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
21 cvmlift2.p . . . . . . . . . . . . 13 (𝜑𝑃𝐵)
22 cvmlift2.i . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑃) = (0𝐺0))
23 cvmlift2.h . . . . . . . . . . . . 13 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
24 cvmlift2.k . . . . . . . . . . . . 13 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
2518, 19, 20, 21, 22, 23, 24cvmlift2lem5 31289 . . . . . . . . . . . 12 (𝜑𝐾:((0[,]1) × (0[,]1))⟶𝐵)
2625adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝐾:((0[,]1) × (0[,]1))⟶𝐵)
278adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑉 ∈ II)
28 elssuni 4467 . . . . . . . . . . . . . . . 16 (𝑉 ∈ II → 𝑉 II)
2928, 4syl6sseqr 3652 . . . . . . . . . . . . . . 15 (𝑉 ∈ II → 𝑉 ⊆ (0[,]1))
3027, 29syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑉 ⊆ (0[,]1))
3130, 17sseldd 3604 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑌 ∈ (0[,]1))
3231snssd 4340 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → {𝑌} ⊆ (0[,]1))
33 xpss12 5225 . . . . . . . . . . . 12 ((𝑈 ⊆ (0[,]1) ∧ {𝑌} ⊆ (0[,]1)) → (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)))
346, 32, 33syl2anc 693 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)))
3526, 34fssresd 6071 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝐾 ↾ (𝑈 × {𝑌})):(𝑈 × {𝑌})⟶𝐵)
3634adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)))
37 simpr 477 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → 𝑧 ∈ (𝑈 × {𝑌}))
38 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑌}) ⊆ 𝑀)
39 cvmlift2.m . . . . . . . . . . . . . . 15 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
4038, 39syl6sseq 3651 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑌}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)})
41 ssrab 3680 . . . . . . . . . . . . . . 15 ((𝑈 × {𝑌}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} ↔ ((𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)) ∧ ∀𝑧 ∈ (𝑈 × {𝑌})𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)))
4241simprbi 480 . . . . . . . . . . . . . 14 ((𝑈 × {𝑌}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} → ∀𝑧 ∈ (𝑈 × {𝑌})𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
4340, 42syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ∀𝑧 ∈ (𝑈 × {𝑌})𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
4443r19.21bi 2932 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
45 iitopon 22682 . . . . . . . . . . . . . . 15 II ∈ (TopOn‘(0[,]1))
46 txtopon 21394 . . . . . . . . . . . . . . 15 ((II ∈ (TopOn‘(0[,]1)) ∧ II ∈ (TopOn‘(0[,]1))) → (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))))
4745, 45, 46mp2an 708 . . . . . . . . . . . . . 14 (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1)))
4847toponunii 20721 . . . . . . . . . . . . 13 ((0[,]1) × (0[,]1)) = (II ×t II)
4948cnpresti 21092 . . . . . . . . . . . 12 (((𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)) ∧ 𝑧 ∈ (𝑈 × {𝑌}) ∧ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)) → (𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))
5036, 37, 44, 49syl3anc 1326 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → (𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))
5150ralrimiva 2966 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ∀𝑧 ∈ (𝑈 × {𝑌})(𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))
52 resttopon 20965 . . . . . . . . . . . 12 (((II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))) ∧ (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1))) → ((II ×t II) ↾t (𝑈 × {𝑌})) ∈ (TopOn‘(𝑈 × {𝑌})))
5347, 34, 52sylancr 695 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ((II ×t II) ↾t (𝑈 × {𝑌})) ∈ (TopOn‘(𝑈 × {𝑌})))
54 cvmtop1 31242 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
5519, 54syl 17 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ Top)
5655adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝐶 ∈ Top)
5718toptopon 20722 . . . . . . . . . . . 12 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
5856, 57sylib 208 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝐶 ∈ (TopOn‘𝐵))
59 cncnp 21084 . . . . . . . . . . 11 ((((II ×t II) ↾t (𝑈 × {𝑌})) ∈ (TopOn‘(𝑈 × {𝑌})) ∧ 𝐶 ∈ (TopOn‘𝐵)) → ((𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶) ↔ ((𝐾 ↾ (𝑈 × {𝑌})):(𝑈 × {𝑌})⟶𝐵 ∧ ∀𝑧 ∈ (𝑈 × {𝑌})(𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))))
6053, 58, 59syl2anc 693 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ((𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶) ↔ ((𝐾 ↾ (𝑈 × {𝑌})):(𝑈 × {𝑌})⟶𝐵 ∧ ∀𝑧 ∈ (𝑈 × {𝑌})(𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))))
6135, 51, 60mpbir2and 957 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶))
62 sneq 4187 . . . . . . . . . . . . 13 (𝑤 = 𝑌 → {𝑤} = {𝑌})
6362xpeq2d 5139 . . . . . . . . . . . 12 (𝑤 = 𝑌 → (𝑈 × {𝑤}) = (𝑈 × {𝑌}))
6463reseq2d 5396 . . . . . . . . . . 11 (𝑤 = 𝑌 → (𝐾 ↾ (𝑈 × {𝑤})) = (𝐾 ↾ (𝑈 × {𝑌})))
6563oveq2d 6666 . . . . . . . . . . . 12 (𝑤 = 𝑌 → ((II ×t II) ↾t (𝑈 × {𝑤})) = ((II ×t II) ↾t (𝑈 × {𝑌})))
6665oveq1d 6665 . . . . . . . . . . 11 (𝑤 = 𝑌 → (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) = (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶))
6764, 66eleq12d 2695 . . . . . . . . . 10 (𝑤 = 𝑌 → ((𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) ↔ (𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶)))
6867rspcev 3309 . . . . . . . . 9 ((𝑌𝑉 ∧ (𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶)) → ∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶))
6917, 61, 68syl2anc 693 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶))
70 cvmlift2lem11.5 . . . . . . . . 9 (𝜑 → (∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶)))
7170imp 445 . . . . . . . 8 ((𝜑 ∧ ∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶)) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
7269, 71syldan 487 . . . . . . 7 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
7372adantr 481 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
747adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑍𝑉)
7574snssd 4340 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → {𝑍} ⊆ 𝑉)
76 xpss2 5229 . . . . . . . . 9 ({𝑍} ⊆ 𝑉 → (𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉))
7775, 76syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉))
78 iitop 22683 . . . . . . . . . 10 II ∈ Top
7978, 78txtopi 21393 . . . . . . . . 9 (II ×t II) ∈ Top
80 xpss12 5225 . . . . . . . . . 10 ((𝑈 ⊆ (0[,]1) ∧ 𝑉 ⊆ (0[,]1)) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
816, 30, 80syl2anc 693 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
8248restuni 20966 . . . . . . . . 9 (((II ×t II) ∈ Top ∧ (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1))) → (𝑈 × 𝑉) = ((II ×t II) ↾t (𝑈 × 𝑉)))
8379, 81, 82sylancr 695 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × 𝑉) = ((II ×t II) ↾t (𝑈 × 𝑉)))
8477, 83sseqtrd 3641 . . . . . . 7 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ ((II ×t II) ↾t (𝑈 × 𝑉)))
8584sselda 3603 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝑧 ((II ×t II) ↾t (𝑈 × 𝑉)))
86 eqid 2622 . . . . . . 7 ((II ×t II) ↾t (𝑈 × 𝑉)) = ((II ×t II) ↾t (𝑈 × 𝑉))
8786cncnpi 21082 . . . . . 6 (((𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶) ∧ 𝑧 ((II ×t II) ↾t (𝑈 × 𝑉))) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧))
8873, 85, 87syl2anc 693 . . . . 5 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧))
8979a1i 11 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (II ×t II) ∈ Top)
9081adantr 481 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
9178a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → II ∈ Top)
92 txopn 21405 . . . . . . . . . 10 (((II ∈ Top ∧ II ∈ Top) ∧ (𝑈 ∈ II ∧ 𝑉 ∈ II)) → (𝑈 × 𝑉) ∈ (II ×t II))
9391, 91, 2, 27, 92syl22anc 1327 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × 𝑉) ∈ (II ×t II))
94 isopn3i 20886 . . . . . . . . 9 (((II ×t II) ∈ Top ∧ (𝑈 × 𝑉) ∈ (II ×t II)) → ((int‘(II ×t II))‘(𝑈 × 𝑉)) = (𝑈 × 𝑉))
9579, 93, 94sylancr 695 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ((int‘(II ×t II))‘(𝑈 × 𝑉)) = (𝑈 × 𝑉))
9677, 95sseqtr4d 3642 . . . . . . 7 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ ((int‘(II ×t II))‘(𝑈 × 𝑉)))
9796sselda 3603 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝑧 ∈ ((int‘(II ×t II))‘(𝑈 × 𝑉)))
9825ad2antrr 762 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝐾:((0[,]1) × (0[,]1))⟶𝐵)
9948, 18cnprest 21093 . . . . . 6 ((((II ×t II) ∈ Top ∧ (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1))) ∧ (𝑧 ∈ ((int‘(II ×t II))‘(𝑈 × 𝑉)) ∧ 𝐾:((0[,]1) × (0[,]1))⟶𝐵)) → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧) ↔ (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧)))
10089, 90, 97, 98, 99syl22anc 1327 . . . . 5 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧) ↔ (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧)))
10188, 100mpbird 247 . . . 4 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
10215, 101ssrabdv 3681 . . 3 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)})
103102, 39syl6sseqr 3652 . 2 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ 𝑀)
104103ex 450 1 (𝜑 → ((𝑈 × {𝑌}) ⊆ 𝑀 → (𝑈 × {𝑍}) ⊆ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  wss 3574  {csn 4177   cuni 4436  cmpt 4729   × cxp 5112  cres 5116  ccom 5118  wf 5884  cfv 5888  crio 6610  (class class class)co 6650  cmpt2 6652  0cc0 9936  1c1 9937  [,]cicc 12178  t crest 16081  Topctop 20698  TopOnctopon 20715  intcnt 20821   Cn ccn 21028   CnP ccnp 21029   ×t ctx 21363  IIcii 22678   CovMap ccvm 31237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-cmp 21190  df-conn 21215  df-lly 21269  df-nlly 21270  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791  df-pconn 31203  df-sconn 31204  df-cvm 31238
This theorem is referenced by:  cvmlift2lem12  31296
  Copyright terms: Public domain W3C validator